DEFORMATION OF REINFORCED CONCRETE WALL-SLAB CONNECTION UNDER LATERAL LOADS

By

SALUSIAH BINTI JAPAR

This report is submitted as a requirement for the degree of Bachelor of Engineering (Hons.) Civil

UNIVERSITI TEKNOLOGI MARA
DECEMBER 2011
DECLARATION BY THE CANDIDATE

I Salusiah Binti Japar confirm that the work is on my own and the appropriate credit has been given where reference has been made to the work of other researchers.

Student Name: Salusiah Binti Japar
Student ID : 2009479454
Date : 05 JANUARY 2012
The subject of the behavior and strength of the connection between wall-slab connection has been of significant interest to researchers since 1850. The nature problem of concrete such as cracking and brittleness has become a major problem especially when it comes to the weaker point of a structure which is the connection. This study is conducted to determine the deformation of reinforced concrete wall-slab connection under in terms of deformation and limiting cracking width. Based from the load displacement profile, the ultimate load of the sample is 29.42 kN at 19.85 mm displacement before the sample was failed. In the other hand, the load and strain are considered to behave linearly until it reached the maximum load. The maximum load of the sample is 32.00 kN at 1.30 % drift. In terms of cracking hairline crack started at 0.2% drift and become wider as the drift level increased. From the observation, there are failure cracks along the connection and at the side of the connection that influence the strength of the connection itself. A flexural crack and a longitudinal crack can be seen along connection part obviously after the sample failed. The smallest design of steel fabric were use to limit the cracks width and control the cracks to prevent from weaken the structure especially the connection of the wall-slab.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Content</td>
<td>i – iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii – iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objective 2
1.4 Scope of Study 3
1.5 Limitation of Study 4
1.6 Significance of Study 4

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Wall Panel 6 - 7
2.3 Slab Panel 7 - 8
2.4 Connection 9
 2.4.1 Lapping in Reinforcement 9
 2.4.2 Lap or Development Length 9
2.5 Steel Fabric 10
2.6 Structural Behaviour 11
 2.6.1 Cracking 11
 2.6.2 Deflection 11
 2.6.3 Ductility 12
2.7 Lateral Load 12
CHAPTER 3 METHODOLOGY

3.1 Introduction 13-15
3.2 Preliminary Laboratory Works 15
 3.2.1 Preparation Reinforcement cages 15 - 16
 3.2.2 Preliminary testing for rebar 17
 3.2.2.1 Tensile Test 17
 3.2.2.2 Bend Test 18
 3.2.2.3 Weld Test 18
 3.2.3 Attach the strain gauge to the Reinforcement Bars 19
 3.2.3.1 The Location of strain gauge 20-21
 3.2.3.2 Strain gauge 22
 3.2.4 Prepare of formwork according to specimen 22-24
 3.2.5 Type of materials in ready mix 24
 3.2.5.1 OPC 24-25
 3.2.5.2 Aggregate 25
 3.2.5.3 Sand 26
 3.2.5.4 Water 26
 3.2.6 Casting and Curing Concrete Cube 27
 3.2.7 Test on Materials 27
 3.2.8.1 Slump test 27
 3.2.8.2 Cube test 28
 3.2.8.3 Compression test 28-29
3.3 Wall-slab Sample preparation 29
 3.3.1 Casting and Concreting Sample 29
 3.3.2 Instrumentation and experimental Set-up 30
 3.3.2.1 LVDT 30 - 31
 3.3.2.2 Data logger 31 - 32
 3.3.2.3 Load cells 32 - 33
3.4 Analysis Data and Discussion 33

CHAPTER 4 RESULT AND DISCUSSION

4.1 Slump Test 34
4.2 Compression Test 35 - 36
4.3 Steel Fabric Test 37 - 38
4.4 Load Displacement Profile 39 - 46
4.5 Load and Strain 46 - 56
4.6 Mode of Failure 56 - 58