STRUCTURAL PERFORMANCE OF EXPANDED POLYSTYRENE LIGHTWEIGHT CONCRETE (EPS - LWC) WALL PANEL WITH SQUARE OPENING

By

SYED NURFAHMI EFFENDI BIN SYED ABDUL MALIK

This report is submitted as a partial requirement for the degree of Bachelor of Engineering (Hons.) Civil

UNIVERSITI TEKNOLOGI MARA

DECEMBER 2013

DECLARATION BY THE CANDIDATE

I Syed Nurfahmi Effendi Bin Syed Abdul Malik 2009352885confirm that the work in this report is my own work and the appropriate credit has been given where references have been made to the work of other researchers.

Signature	: folin
Name of author	: Syed Nurfahmi Effendi Bin Syed Abdul Malik
Student ID	: 2009352885
Date	: 04DECEMBER 2013

ABSTRACT

The load bearing wall is common construction for tall building. The lightweight expanded polystyrene wall panel was establishing in this study in order to develop as the load bearing wall. This study provide the expanded polystyrene lightweight concrete (EPS - LWC) wall panel with square opening at the centre of wall panel. The objective of this study is to determine the ultimate axial load and maximum deflection of expanded polystyrene light weight concrete (EPS - LWC) wall panel. At the same time, this study also to evaluate crack behaviour of expanded polystyrene light weight concrete (EPS - LWC) wall panel with square opening. The material using to establish lightweight concrete wall panel are steel fibre and expanded polystyrene beads. The using of steel fiber is to minimize the major and minor crack around the opening. For the expanded polystyrene beads (EPS), it's using to replace the coarse and fine aggregate to ensure the lightweight wall panel is establish.

In this study were conducted two samples which are EPS - LWC wall panel with and without opening. The sample of EPS - LWC wall panel without opening is a control sample to compare with EPS - LWC wall panel with square opening. The result further confirm that the ultimate load of EPS - LWC without opening was 771 kN higher than EPS - LWC with square opening which is 428 kN. The deflection profile was not compliance the Euler's rule because the wall was experience the maximum deflection at 1350 mm from the base of wall panel.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii-iv
LIST OF FIGURES	v-vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1: INTRODUCTION

1.1	Research Background		
1.2	Problem Statement	2	
1.3	Objective of Study	3	
1.4	Scope and limitation of Study	3-4	
1.5	Significant of Study	4	
1.6	Summary	4	
СНА	PTER 2: LITERATURE REVIEW		
2.1	General	5-6	
2.2	Lightweight concrete	6	
	2.2.1 Types of lightweight concrete	7	
	2.2.1.1 No-fine concrete		
	2.2.1.2 Lightweight aggregate concrete		
	2.2.1.3 Aerated/foamed concrete	9-10	
	2.2.2 Advantages and Disadvantages of Lightweight Concrete	10	
	2.2.3 Application of Lightweight Concrete	11	
2.3	Expanded Polystyrene Beads		
2.4	Fiber	13-14	

	2.4.1	Steel Fiber	14-15
	2.4.2	The Advantages of Replacement Traditional Reinforcement Bars wit	h
		Steel fibers	15
	2.4.3	The Disadvantage Addition of Steel Fiber into Concrete	15
2.5	Steel	Fabric	16
2.6	Comp	ompressive strength	
2.7	Concrete Wall Panel		17-20
2.8	Theor	etical analysis	20
	2.8.1	British Standard	20
	2.8.2	Euler Buckling Load	20-21
	2.8.3	Saheb and Desayi (1990b)	21-22
2.8	Doh a	nd Fragomeni (2006)	22-23
2.9	Gap o	Gap of Research	
2.10	Summary		24
CHAI	PTER 3	3: RESEARCH METHODOLOGY	
3.1	Introd	uction	25
3.2	Experimental Process		25-26
3.3	Wall Sample		26-27
3.4	Preparation of Formwork		28
3.5	Steel Fabric		29
3.6	Prepa	ration of Material	30