THE EFFECT OF ACUTE AND CHRONIC EXOGENOUS LEPTIN ADMINISTRATION ON GLUT4 EXPRESSION AND PLASMA GLUCOSE UPTAKE IN THE RAT

WJIDAN.I.KHALIL

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Medicine

February 2016
AUTHOR'S DECLARATION

I declare that the work in this thesis dissertation was carried out in accordance with the regulation of University Technology MARA. It is original and is the results of my one work. Unless otherwise indicated or acknowledgment as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for my degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulation for post academic, University Technology MARA. Regulation the conduct of my study and research.

Name of Student : Wjidan I. Kalil Al-Khazaali
Student ID No. : 2010246614
Programme : Master of Science
Faculty : Medicine
Thesis Title : The effect of acute and chronic exogenous leptin administration on GLUT4 Expression and Plasma Glucose uptake in the Rat
Signature of student : ..
Date : February 2016
ABSTRACT

Acute leptin administration to rats inhibits insulin secretion either through centrally or peripherally mediated mechanisms. But type 2 diabetic obese individuals with impaired glucose utilization are also hyperleptinemic, which suggests that leptin action might depend on the duration of exposure to hyperleptinemia. This study examined the difference in blood glucose homeostasis following acute and chronic leptin administration in rats. Glucose tolerance curves were plotted for 14-week old male Sprague-Dawley rats treated with either normal saline (Control; n=8) or a single leptin injection (60ug/kg body weight - acute leptin; n=8) or subcutaneous leptin injections for 42 days (60 ug/kg body weight/day-chronic leptin; n=8). Following this, the rats were anaesthetised with thiopentone sodium (100 mg/kg/body weight) and infused intravenously with 50 mg of glucose in water at a rate of 100 µl/min for 5 minutes. Arterial blood samples were collected every 5 mins for the first 30 minutes for glucose estimation. Data were analysed using repeated measures MANOVA or one-way ANOVA with post-hoc analysis, and presented as mean ± SEM. Glucose clearance in acute leptin-treated rats did not differ from the controls. However, there was an overall significant decrease in plasma insulin levels with improved insulin sensitivity. This was achieved by increased insulin receptor expression whilst maintaining normal GLUT4 levels mainly through effective translocation from the GLUT4 vesicles. Compared to the acute leptin-treated rats, chronic leptin-treated animals had significantly higher blood glucose levels and hyperinsulinemia after glucose challenge. Chronic leptin administration decreased insulin sensitivity index by inhibiting the expression of insulin receptor. Conclusion it appears that the role of leptin in glucose clearance might be related to the duration of exposure to leptin. Acute leptin administration inhibited insulin secretion while maintaining normal glucose homeostasis by increasing insulin sensitivity by 1) increasing the expression of insulin receptor in the skeletal muscle, 2) by effectively maintaining GLUT4 translocation from the storage vesicles probably mediated by PI3K pathway. Chronic administration of leptin for 42 days induced insulin resistance by decreasing the expression of insulin receptors in the insulin sensitive tissues. This resulted in the compensatory hyperinsulinemia. Since the chronic study was designed to mimic the chronic elevation of leptin or hyperleptinemic state in obese individuals, the findings from our study suggest that hyperleptinemia decreases expression of insulin receptors in insulin-sensitive tissues and thus promotes insulin resistance.
ACKNOWLEDGMENT

In the name of Allah, the All-merciful, the All-compassionate. All my praise goes to Allah, who has given me strength and blessings. It is with immense gratitude that I acknowledge the support and help of my supervisors Assoc Professor Dr Justin Vijay Gnanou of Universiti Pertahanan Nasional Malaysia (UPNM) and Prof.Dr. Harbindar Jeet Singh of Universiti Teknologi MARA for their patience, knowledge and experience and sparing no effort in guiding me throughout my work.

During my time at the IMMB/Faculty of medicine, I had the chance to meet and work with the best people, and I am grateful for their kindness and friendship. My sincere thanks go to the Director and members of IMMB for providing such a convivial atmosphere in the place of work.

Finally, my deepest gratitude goes to my beloved, father, husband, siblings and my friends for their constant support and love throughout my life. A special thanks goes to my beloved mother who has always loved me and given me the confidence to go through my postgraduate studies. Millions of thanks for the love, encouragement and endless support they have given me.
TABLE OF CONTENTS

AUTHOR'S DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF SYMBOLS xvii
LIST OF ABBREVIATIONS xviii

CHAPTER ONE: INTRODUCTION
1.1 BACKGROUND 1
1.2 PHYSIOLOGY OF LEPTON 3
 1.2.1 The Ob/Ob Mouse 3
 1.2.2 The Leptin Gene 5
 1.2.3 The Leptin Receptor 6
 1.2.4 Leptin Receptor Internalization 6
 1.2.5 Mechanism of Action of Lepton 7
 1.2.6 JAK/STAT Signal Transduction Cascade 8
 1.2.7 The PI3K (phosphoinositide 3-inase) /PDE3B phosphodiesterase 3B)/cAMP pathway 10
 1.2.8 MAPK (Mitogen-Activated Protein Kinase) Cascade 13
1.3 Functions of Leptin 14
 1.3.1 Central Effects of Leptin 14
 1.3.2 Mechanism of Central Effects of Leptin 15
 1.3.3 Peripheral Effects of Leptin 16