ELASTIC AND STRUCTURAL PROPERTIES OF V_2O_5-PbO-ZnO AND V_2O_5-TeO$_2$-Li$_2$O GLASS SYSTEMS

SITI LAILA BINTI ABDUL HAMID

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2015
AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Siti Laila Binti Abdul Hamid
Student I.D. No. : 2011297398
Programme : Master of Science (Research) - AS780
Faculty : Faculty of Applied Sciences
Thesis/Dissertation : Elastic and Structural Properties of V$_2$O$_5$-PbO$_2$-ZnO and V$_2$O$_5$-TeO$_2$-Li$_2$O Glass Systems

Signature of Student : ..
Date : September 2015
ABSTRACT

Ternary \((55-x)V_2O_5-45PbO-(x)ZnO \) \((x = 0-15 \text{ mol}%)\) and \(35V_2O_5-(65-x)TeO_2-(x)Li_2O \) \((x = 10-50 \text{ mol}%)\) glass series were prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring sound velocity using the pulse-echo-overlap technique and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Properties such as density \((\rho)\), molar volume \((V_m)\), and glass transition temperature \((T_g)\) were also reported. For \((55-x)V_2O_5-45PbO-(x)ZnO\) glass series, results from the study showed that both longitudinal and shear velocities decreased at \(x = 5 \text{ mol}\%\) with the increase of ZnO concentration. The independent longitudinal and shear moduli, \(C_L\) and \(\mu\) and Young’s modulus \((Y)\) also showed decreasing trend at \(x = 5 \text{ mol}\%\) as the fraction of ZnO increases. FTIR analysis showed an increase in non-bridging oxygen (NBO) as indicated by the increase in intensity of VO\(_4\) assigned peaks at \(x = 5 \text{ mol}\%\) while the increase in intensity of VO\(_5\) assigned peaks at \(x > 5 \text{ mol}\%\) indicates increasing bridging oxygen (BO). The glass transition temperature \((T_g)\) showed a decrease at \(x = 0-5 \text{ mol}\%\) which implies increase in non-bridging oxygen (NBO) while an increase of \(T_g\) for \(x = 10-15 \text{ mol}\%\) indicates the decrease in NBO. Analysis of the experimental results using the bulk compression and ring deformation models showed that the calculated value of \(K_{bc}\) was higher than that of \(K_e\) but \(K_{bc}/K_e\) ratio drops from 2.16 \((x = 5 \text{ mol}%)\) to 1.94 \((x = 10 \text{ mol}%)\) indicating that bond bending or ring deformation was slightly reduced with addition of ZnO. For \(35V_2O_5-(65-x)TeO_2-(x)Li_2O\) glass series, both longitudinal \((v_L)\) and shear velocity \((v_S)\) showed an increase of 6.57\% and 16.52\%, respectively, at \(x = 20 \text{ mol}\%\). The initial increase in \(C_L\) and \(\mu\) at \(x = 20 \text{ mol}\%\) was suggested to be attributed to the increase in number of bridging oxygen (BO) which caused stiffness and rigidity of the glass network to increase while the decrease in \(C_L\) and \(\mu\) between \(x = 20\) and \(x = 30 \text{ mol}\%\) was suggested to be due to the increase in number of non-bridging oxygen (NBO). FTIR analysis showed an increase in intensity of TeO\(_4\) and VO\(_3\) assigned peaks at \(x = 10-20 \text{ mol}\%\) which indicates increasing BO while at the same time the decrease in intensity of TeO\(_3\) and VO\(_4\) assigned peaks indicates decreasing NBO. The increase in intensity of TeO\(_3\) and VO\(_4\) assigned peaks between \(x = 30-50 \text{ mol}\%\) which was accompanied by the decrease in intensity of TeO\(_4\) and VO\(_3\) assigned peaks indicate increases in NBO and decrease in BO, respectively. Therefore in the present study, formation of more BO compared to NBO can be the reason for the increase in stiffness above and vice versa. Our suggestion above is further supported by the variation of glass transition temperature \((T_g)\) results. The increase of glass transition temperature \((T_g)\) at \(x = 10-20 \text{ mol}\%\) implies decrease in non-bridging oxygen (NBO) while the decrease of \(T_g\) for \(x = 30-50 \text{ mol}\%\) indicates the increase in NBO. Quantitative analysis based on bulk compression and ring deformation models showed that the \(K_{bc}/K_e\) ratio drops from 2.60 \((x = 10 \text{ mol}%)\) to 1.74 \((x = 20 \text{ mol}%)\) which indicates that bond bending or ring deformation was reduced with the increase of Li\(_2\)O. Meanwhile, the slight increase in value of \(K_{bc}/K_e\) ratio from 1.74 \((x = 20 \text{ mol}%)\) to 2.06 \((x = 30 \text{ mol}%)\) before dropping to 1.93 \((x = 40 \text{ mol}%)\) and later increasing slightly to 1.96 \((x = 50 \text{ mol}%)\) indicates variation in ring deformation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Research Background 1
1.2 Problem Statements 4
1.3 Objectives Of The Research 5
1.4 Significance Of Study 5
1.5 Chapter Organization 6

CHAPTER TWO: LITERATURE REVIEW

2.1 Glasses
 2.1.1 Definition Of Glass 7
 2.1.2 Atomic Arrangement Of Glass 8
 2.1.3 Classification Of Glass 9
 2.1.4 Types Of Glass Systems 10
 2.1.5 Glass Formation 11
 2.1.6 Terms / Terminology In Glass System 13
 2.1.7 Applications Of Glasses 15
2.2 Vanadate (V\textsubscript{2}O\textsubscript{5}) Glasses
 2.2.1 Basic Structure Of V\textsubscript{2}O\textsubscript{5} 16
 2.2.2 Schematic Bond 19
2.3 Tellurite (TeO₂) Glasses

2.3.1 Basic Structure Of TeO₂ 20
2.3.2 Schematic Bond Model 23

2.4 Studies Of IR Spectra On Glass Systems Using Fourier Transform Infrared (FTIR) Spectroscopy

2.4.1 IR Spectra For Ternary PbO-V₂O₅ Glass 26
2.4.2 IR Spectra For Ternary V₂O₅-TeO₂ And TeO₂-Li₂O Glasses 27

2.5 Elastic Studies On Binary And Ternary Glass System 29

2.6 Theoretical Models For Glasses

2.6.1 Bulk Compression Model 31
2.6.2 Ring Deformation Model 32

CHAPTER THREE: METHODOLOGY

3.1 Samples Preparation

3.1.1 Materials 34
3.1.2 Glass Samples Preparation 35

3.2 Sample Characterization

3.2.1 X-Ray Powder Diffraction (XRD)

3.2.1.1 Introduction To XRD 39
3.2.1.2 Concept Of XRD 40
3.2.1.3 XRD Measurement 41

3.2.2 Density Measurement 43

3.2.3 Differential Scanning Calorimetry (DSC)

3.2.3.1 Concept Of DSC 45
3.2.3.2 DSC Measurement 48

3.2.4 Fourier Transform Infrared (FTIR) Spectroscopy

3.2.4.1 Concept Of FTIR Spectroscopy 50
3.2.4.2 FTIR Measurement 51

3.2.5 Ultrasonic Wave Velocity

3.2.5.1 Concept Of Ultrasonic Velocity 53
3.2.5.2 Ultrasonic Velocity Measurement 56