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ABSTRACT 

FRP (Fibre Reinforce Plastics) laminates are now widely used in different 
industries like aviation, marine and transportation as FRP has shown 
considerable strength and hardness. However, these materials are 
vulnerable to lateral intensive static loads and impacts but have proved 
a good stability and strength in industrial applications. In this paper, an 
analytical method for ballistic impact on FRP laminates has been proposed 
along with impact analysis of the panel, which has been carried out in 
two stages; Rupture and Wave-dominated local failure. First a simple 
analytical model for local deformation failure and critical shear failure 
has been used to predict perforation in FRP laminates. For verification of 
the model, several projectile impact experiments have been conducted to 
evaluate proposed model. It is concluded that experimental data are in good 
agreement with proposed analytical model results and effects of different 
geometrical parameters like panel dimensions and projectile diameter on 
ballistic velocity have been studied. In addition, analytical data have also 
been verified with results which were obtained from ofLS-DYNA simulation. 

Keywords: Fibre-Reinforced Plastic, Impact, Failure Analysis, Ballistic 
Limit Velocity. 
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Introduction 

Fibre-reinforced plastic (FRP) is a one type of composite materials which 
made of a polymer matrix reinforced with fibres. The commonly used 
fibres are glass, aramid or carbon. Some other fibres like paper or wood or 
asbestos have been rarely used and the resin usually consist of an epoxy, 
vinylester or polyester thermosetting plastic. Aziz has studied the ballistic 
impact study for the non-filled aluminium tank. The results showed that the 
ballistic limit for the front tank wall and rear tank wall was 257.7 m/s and 
481 m/s, respectively. In addition, this study presented the correlation of 
the impact velocity towards residual velocity, damage area, wall deflection, 
velocity drop and energy absorbed [1]. Yunus has investigated, the effect 
of low energy impact to the residual strength and modulus of short kenaf 
fibre reinforced epoxy composites. He found that the low energy impacts 
were affecting the residual strength and residual stiffness which indicated 
the short kenaf fibre reinforced epoxy composites were extremely sensitive 
to the impact loads. The damages were manifest by the visible observation 
of cracks on the specimens [2]. Gu [3] has presented an analytical model 
of projectile penetration in composite materials which based on adsorbed 
energy by fibres regarding strain effect on stress-strain relation in fibres. 
He has modelled a woven fibre instead of a composite material. Gellert [4] 
obtained ballistic limit velocity on Glass Fiber Reinforced Plastic (GFRP) 
laminates with different thickness, under projectile impact on conic head. 
Ulven [5] has experimentally studied effect of projectile head shape on 
perforation ballistic limit and energy adsorption VARTM carbon/epoxy 
composite panels. 

Modelling and Analysis 

There are two steps that have been considered for impact analysis on 
FRP laminates. Complete deformation with local fragmentation and local 
deformation are caused by wave. First of all, an analytical model is proposed 
for complete laminate deformation which subjected to flat head projectile 
impact. This model goes with shear failure criteria which could be used 
to predict laminate perforation. By combining local failure model of the 
governing wave and general concept of critical impact velocity theory 
(Von Karman) second fracture mode will be gained. Assuming a predefined 
value for local notch, overall bending, energy adsorption and neglecting 
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energy losses like friction an analytical model for impact between flat head 
projectile and thin FRP laminates has been developed. 

Semi static force and displacement 

In Figure 1, a FRP laminate which is statically loaded with a flat projectile 
is shown. In the Figure 1 equivalent spring system is represented. Relation 
between semi static contact force P with local notch is as below [6,7]: 

P = Kca (1) 

Where: 

2 R • • t . 

&c
 =~rr is contacting hardness; 

R: Projectile Radius; 

And HQ is obtained from following [6,7]: 

H=-
2 T ( C U C 3 3 < ) 

Q-lCnCu-C*u-2CnCm)/2CuCm 

K2=Q± Ja*-cJt 

Where C is the "Elastic Constants" for isotropic elastic material. 
u 

O 

. * 

«P^» 
f-

Figure 1: Laminated plate encountering a flat head projectile impact 
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Figure 2: Impact spring model 

P = K.Wn + K W> 
bs 0 m 0 

(2) 

Where: 
PF0: is vertical deflection of mid plane 
Kbs: is shear and bending effective stiffness 
Kbs: is effective shell stiffness for fixed plates. 

Km and Kb for fixed plates are obtained from following relations [8,9]: 

16;r£,#3 

K„ = 
3(1- u^S2 (3) 

K_ 
l9lxEtH 

16252 (4) 

K„.=-K^ 
Kh+K, 

b s 

(5) 

In the above relations, S is the laminate plate dimension. Effective 
shear stiffness is obtained from following relation [8]: 

4/r r \ 

yEx-4unGnJ 

4 5 
-+Log— , 
3 S2RJ 

(6) 
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Energy Adsorption 

Adsorbed energy in laminate is considered as a total deformation energy, 
failure energy and delamination energy. Wasted energy caused by 
deformation is equal to sum of contact energy (EJ and adsorbed energy 
by complete deformation (Ebm). Consequently, by replacing Wof (critical 
vertical deflection) with Wo deformation energy is obtained as below: 

*-, =K +** = 1 « « + 1 Pdw0 = ^ * f +-K»K +~KK (7) 

[6]. 
By the aid of following approximation deformation energy is obtained 

P = KJT0/ + KmWS, = 2xRHKrn (8) 

T13 is vertical laminate shear strength and 2K being fixture factor [6]. 
In this paper we consider 2K. By considering <f> as an experimental constant, 
adsorbed energy from failure for H/D > ̂  is obtained by following equation: 

Efmc =nR\H-<l>D)et+nR{<l>D)2KTn (1-9) 

And for: 

Efmc=xRH2Krl3 (2-9) 

Where et is tensile failure energy density. The value of (j> is consider 
0.21 approximately [10]. Delamination is initiated under contact loading 
region by forming cracks in inner plane matrix by shear stress. Delamination 
could propagate through material complying mode 1 (tensile) and mode 2 
(compressive). Delamination energy on FRP laminates is stated as below 
[10]: 

E*TASGnc (10) 
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In the above expression, Ad is delaminating surface on mid plane and 
Gnc is fracture toughness in second mode [6]. 

(11) 
16^i/2U^5 

' " 9 d - ^ ) ( 1 2 ) 

Where P, is delamination critical force and zTDCQ is internal shear stress. 
Energy is semi static loading in FRP laminates perforation in flat head 
projectile is obtained from following equation: 

ET-Ed¥+Efrac+EM (13) 

Impact perforation energy (E) is stated as below [6]: 

EP=<pET (14) 

Where ̂  is dynamic increment factor which is obtained from following 
equation: 

<p = V (I5) 
I+B <yt >vc) 

Where B is experimental constant, Vc is Von Karman critical velocity 
and V. is projectile initiate velocity. In this paper </> is considered to be 0.21. 

= I2p(g«,+*„+*„) ( 1 6 ) 
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Local Failure Caused by Wave 

Resisting force against flat head projectile while hitting FRP laminates are 
derived from following equation [18]: 

n r——— 

F-^—ia+pJ^V;) (18) 

Where ae is linear elastic limit for FRP laminates in compression 
through thickness direction, pt is FRP laminate density and/? is experimental 
constant which is considered for flat head projectile. 

By using energy equilibrium, -GV£ = F • H and replacing V. = Vb in 
which ballistic limit for thick FRP laminates are obtained as below: 

7tSoaD2H 
V-J±!l-i _ 2G 

2G 

7tptD
2H 

(19) 

Thickness Evaluation Criterion for FRP Laminates 

By using Vb = Vc and replace it in equation (18) and by using G = ^nD2LpP in 
which L is length and/) is projectile density, ratio of FRP laminate critical 
thickness to projectile diameter is obtained as below: 

H} 4 \EA(PP\(L^ ^20) 

D)c 2[l + 2^Ejcre£f]{crj{pt){D 

In equation (20) if H/D > (H/D)c then FRP laminate will break in local 
mode caused by wave, otherwise it will be broken in deformation mode by 
local dividing in two parts. 

Results and Discussion 

FRP laminates are subjected to flat head projectile as shown in Figure 1. FRP 
laminates properties are shown in Table 1. Results obtained from proposed 
model are compared with experimental data which mentioned in references 
[4,5]. Figure 3 shows values of calculated ballistic limits in term of H/D. 
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In this figure a comparison have been made between gathered data from 
experiment analysis and those data which presented in reference [4]. Critical 
ratio (H/D)c for GFRP laminates which are subjected to impact from a 3.84 
gr and 6.35 mm flat head projectile with the aid of eq. (19) is equal to 0.160. 

In Figure 4 a comparison is represented between experimental data in 
reference [4] and ballistic limit velocity. Critical rate ratio (H/D)c for CFRP 
laminates which subjected to flat head projectile which its mass is 14 gr and 
diameter 12.7 mm by using equation (24) is equal to 0.199. 

Table 1: Material properties 
Carbon Epoxy E-Galss/Vinylester [4,5] 

S 

P, 

£3 

Gn 

°M 

r , 3 

Sf 

^IRSS 

et 

GIIC 

B 

°e 

100 mm 

1850 Kg \m 

24.9 GPa 

lAGPa 

1.9 GPa 

0.15 

49MPa 

0.021 

\3MPa 

4.98 Mjjm 

2.SKj/m2 

1.64 

250MPa 

101.6mm 

1550 Kg \m 

53JGPa 

U.lGPa 

AGPa 

0.31 

19MPa 

0.0138 

5OMP0 

5.1M//m3 

OAKj/m2 

0 

%5MPa 
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As shown in Figure 3 and Figure 4, local failure model caused by wave 
are in good agreement with experimental data; however local deformation 
model, couldn't predict ballistic limit properly. With any increment in plate 
thickness, difference between experimental results and prediction of local 
deformation model become more noticeable. 

ouu 
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' // 
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Figure 3: Comparison between ballistic limit velocity obtained from 
represented model and experimental data in reference [4] 

150 

I 
>" 

100 

50 

• Experimental Data 
Global deformation failure model (equation( 16)) 
Wave-dominated local failure model (equation( 18))| 
(H/D)c (eduation(19)) 

I i i i i I I i i i i I i i i i I i i i i I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

H/D 
Figure 4: Comparison between ballistic limit velocity obtained from 

represented model and experimental data in reference [5] 
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In the next step effect of plate dimensions and projectile diameter on 
ballistic limit was investigated. Figure 5 shows variation in ballistic limit 
velocity with a carbon/epoxy E-Glass/vinylester plate dimensions. Laminate 
plates thickness is 2.5 mm which subjected to 14 gr and 12.7 mm diameter 
flat head projectile. By considering Figure 5 it becomes obvious that in thin 
plates when dimension increase ballistic limit velocity be higher. 

1 
>* 

Carbon/epoxy [6] 
E-glass/vinylester [5] 

s(m) 

Figure 5: Plate dimension effect on ballistic limit velocity for E-glass/vinylester 

Figure 6 shows ballistic limit variation to projectile diameter for 3.2 
mm thick epoxy/carbon laminate. Projectile mass is 14 gr which its length 
varies with diameter variation. With any increment in projectile diameter 
predicted ballistic limit velocity will increase. 

E 

> 60 

Complete Failure 

Local Failure 

( H T » 

Figure 6: Ballistic limit velocity varies with changes in plate thickness 
to projectile diameter ratio for epoxy/carbon. 
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As the analytical model is in good agreement with experimental results, 
ballistic velocity for materials listed in Table 2 is now calculated and be 
compared with software results. 

Table 2: Projectile mechanical characteristics 

p{-3) E(GPa) v 

7830 207 0.28 

Table 3,4,5 and 6 represent Epoxy-Carbon Elastic properties, E-glass/ 
epoxy Elastic properties, Epoxy-Carbon strength properties and Analysis 
E-glass/epoxy strength properties which were used in ANSYS/LS-DYNA 
modelling setup. 

Table 3: Epoxy-carbon elastic properties in software modeling setup 

(GPa) 

52.1 

E22 E33 E12 E13 E23 Kg 
(GPa) (GPa) (GPa) (GPa) (GPa) Vi2

 Vi3
 v

23
 p ^ } 

52.1 8 3.89 3.8 3.8 0.045 0.064 0.064 1306 

Table 4: E-glass/epoxy elastic properties in software analysis 

(GPa) 

21.15 

(GPa) (GPa) (GPa) (GPa) (GPa) Vn V13 v
23

 p (
f J ^ ) 

21.16 8.3 3.99 4.1 4.1 0.169 0.270 0.276 1750 

Table 5: Epoxy-carbon strength properties in software analysis 

*T 

(MPa) 

545 

YT ZT S12 S13 S23 XC YC ZC 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

545 48.5 64 64 64 410 410 210 

Table 6: E-glass/epoxy strength properties in software analysis 

(MPa) 

213 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

213 26.2 26 26 26 220 220 130 
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The model which was created in ANSYS/LS-DYNA is bilinear 
isotropic solid with SHELL181 element. Elements contact are TARGE 170 
and CONTA173 with friction coefficient MU=0.3. Figures 7, 8 and 9 
represent finite element modelling in ANSYS/LS-DYNA software. 

Figure 7: Projectile and epoxy-carbon composite with 
thickness of 3.2 mm perforated by projectile 

Figure 8: Projectile and 4.5 mm E-glass/epoxy composite laminates before strike 

Figure 9:4.5 mm thick E-glass/epoxy laminate perforated by a projectile 
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Figure 10: A Comparison between ballistic limit velocity results 
from analytical model and software simulation for carbon-epoxy 
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Figure 11: A Comparison between ballistic limit velocity results 
from analytical model and software simulation for E-glass/epoxy 

As it is shown in Figure 10 and Figure 11 there is a little difference 
between analytical results and software simulation results. The main reason 
for such a difference comes from not considering Delamination Energy in 
software solution. Laminates has been modeled by ANSYS/LS-DYNA. 
The results show that with incretion in laminate thickness, ballistic limit 
velocity will also increase. 
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Conclusion 

In this paper, ballistic limit velocity and perforation in fibre reinforced plastic 
laminates subjected to strike were investigated. Two main category of failure 
have been studies; the first one is complete deformation with centralized 
failure and the second one is local failure which was caused by wave. In 
presenting analytical model for complete deformation, semi-statical method 
have been employed to estimate the absorbed energy. Moreover; mechanical 
increment factor has been used for calculating perforation energy. By 
combining Von Karman critical velocity method with local failure model 
for governing wave, the second failure mode was gained. Theoretical results 
for ballistic limit wave prediction are in good agreement with experimental 
results. Presented analytical model is simple and agrees with experimental 
results. By means of proposed model it could be concluded that when plate 
dimensions and projectile diameter increase ballistic limit velocity will also 
increase. Future research should focus on different shapes of projectile when 
encountering a target with different kind of materials. 
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