UNIVERSITI TEKNOLOGI MARA

INSECT PEST COMPOSITION IN THE NON–TREATED MATURED OIL PALM PLANTATION

NORATIKAH BINTI AWANG KECHIK

Final Year Project report submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Plantation Technology and Management

Faculty of Plantation and Agrotechnology

January 2015
CANDIDATE'S DECLARATION

I declare that the work in this Final Year Project was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This Final Year Project report has not been submitted to any other academic institution or non academic institution for any other degree or qualification.

In the event that my Final Year Project is found to violate the condition mention above, I voluntarily waive the right of conferment of my bachelor degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate : NORATIKAH BINTI AWANG KECHIK
Candidate’s ID No. : 2012656858
Programme : Bachelor of Science (Hons.) Plantation Technology and Management
Faculty : Plantation and Agrotechnology
Title : Insect Pest Composition in the Non-Treated Matured Oil Palm Plantation
Signature of Candidate :
Date : 31st January 2015
ABSTRACT

INSECT PEST COMPOSITION IN THE NON-TREATED MATUR ED
OIL PALM PLANTATION

The growth of oil palm can be affected by the infestation of insect pests. So, this research need to be conducted to assess insect pest composition in the non-treated oil palm plantation in order to help the entomologist and local farmers to identify the insect pests existing in this plantation and the interaction among insect pests. This study was conducted for eight weeks at oil palm plantation in Universiti Teknologi MARA, Campus of Jasin, Malacca. Trap used in this study were yellow pan traps which been placed randomly in the oil palm area. A total of 1479 individual insect pests were successfully collected comprising 14 families. Moreover, Cidadellidae was recorded as the most abundant family with 845 individuals followed by the Aphrophoridae, Ricaniidae, Gryllidae, Acrididae, Tettigidae, Chrysomelidae, Tettigoniidae, Blattellidae, Membracidae, Drosophilidae, Carabidae, Reduviidae and Dictyopharidae. Based on Kruskal-Wallis Test, only Cicadellidae has significant difference throughout sampling date (p<0.05). Based on Pearson’s correlation, Aphrophoridae have positive relationship (p<0.05) with families of Ricaniidae, Cicadellidae and Membracidae respectively. Besides that, family of Tettigoniidae has positive relationship with Membracidae, Gryllidae and Tettigidae respectively. Overall, this study found various insect pests existing in the oil palm plantation and there are interactions among insect pests.
TABLE OF CONTENTS

ABSTRACT iv
ABSTRAK v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii-viii
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1-2
1.1 Background of Study 1-2
1.2 Problems Statement of Study 2-4
1.3 Significance of Study 4
1.4 Objectives of Study 5
1.5 Limitation of Study 5

CHAPTER 2 LITERATURE REVIEW 6
2.1 Oil Palm (Elaeis guineensis) 6
2.1.1 Biological and Morphological of Oil Palm 7
2.1.2 Soils and Climatic Requirement of Oil Palm 8
2.1.3 Planting Material and Planting Method 8
2.1.4 Fertilizer Requirement 8-9
2.1.5 Weed Control 9
2.2 Non-Treated and Treated Oil Palm Plantation 9-10
2.3 Mature and Immature Oil Palm 10
2.4 Insect 10
2.4.1 Insect Pest 11
a. Insect Pest in Oil Palm Plantation 11
b. Economic Importance of Insect Pest in Oil Palm 11
c. Termites 11-12
d. Grasshopper (Valanga spp.) 12
e. Rhinoceros Beetles (Orytes rhinoceros) 12-13
f. Nettle Caterpillar 13-14
g. Bagworm 14
h. Bunch Moth (Tirathaba spp.) 14
2.4.2 Beneficial Insect 15-16

CHAPTER 3 METHODOLOGY 17-20
3.1 Flow Chart of Study 17-20
3.2 Location of Study 21
3.3 Apparatus and Materials 21
3.3.1 Yellow Pan Trap 21
3.3.2 Filter 21
3.3.3 Plastic Container and Tissue 21
3.3.4 Forceps 22
3.3.5 Insect Pin 22
3.3.6 Insect Pinning Stage/ Platform 22
3.3.7 Insect Mounting Board 22
3.3.8 Insect Box 22
3.3.9 Water and Detergent 22
3.4 Experimental Design 23
3.5 Sampling Methods 23
3.6 Insect Preservation 23
3.7 Insect Classification 24
3.8 Data Collection 24
3.9 Data Analysis 24

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Insect Pest Composition in Non-Treated Oil Palm 25-29
4.2 Difference of Insect Pest Families throughout the Sampling Date 30-31
4.3 Insect Pest Interaction among Families 32-34

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions 35
5.2 Recommendations 35-36

REFERENCES 37-40

APPENDICES 41-49

CURRICULUM VITAE 50-51