INTERVALWISE BLOCK PARTITIONING USING THREE POINTS FOR SOLVING STIFF SYSTEMS ORDINARY DIFFERENTIAL EQUATIONS

MAHFUZAH BINTI MAHAYADIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Computer and Mathematical Sciences

June 2014
AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institutions nor non-academic institutions for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Mahfuzah Binti Mahayadin
Student I.D. No. : 2010552273
Programme : Master of Science (Mathematics)
Faculty : Computer and Mathematical Sciences
Thesis Title : Intervalwise Block Partitioning Using Three Points for Solving Stiff Systems Ordinary Differential Equations

Signature of Student : ...

Date : June 2014
ABSTRACT

Partitioning is a strategy for solving stiff systems of ordinary differential equations (ODEs) problems. There are two types of partitioning; intervalwise and componentwise partitioning. This thesis is focused only on intervalwise block partitioning (IBP) which the system of equations will initially be treated as non-stiff subsystem and will be solved using Adams block method. Once an equation is identified as stiff, the whole system will be treated as stiff and will be solved using block Backward Differentiation Formulae (BBDF). This process will continue until the integration interval is completed. In addition, variable step size BBDF (VSBBDF) method using three points is derived in order to solve first order stiff ODEs. The partitioning strategy involved is based on Adams method formulae and VSBBDF formulae. A single code is developed based on variable step size IBP. The code is implemented using Microsoft Visual C++ 6.0 XP Version and compared with ode15s and ode23s which are run in MATLAB 7.8. The numerical results have shown that the partitioning strategy has performed well in term of computational time compared to VSBBDF and MATLAB ode solvers, ode15s and ode23s. It shows that the partitioning strategy can be an alternative method to solve first order stiff ODEs.
ACKNOWLEDGEMENTS

In the Name of Allah the Most Compassionate the Most Merciful

First and foremost of all, I would like to express my sincere gratitude and thanks to my supervisor, Associate Professor Dr. Khairil Iskandar Othman for his invaluable guidance and assistance during my study. My deepest thanks are also extended to the member in the supervisory committee, my co-supervisor, Associate Professor Dr. Zarina Bibi Ibrahim from Universiti Putra Malaysia (UPM) for her generosity and patience.

This entire journey would not have been a memorable one without numerous help, support and encouragement from my dearest friends and colleagues especially Nora Baizura Mohd Isa, Wan Rosanisah Wan Mohd, Ros Fadilah Deraman, Zanariah Mohd Yusof and Abdullah Yahya. I am truly blessed with friends that continuously provide me with helpful suggestions and insights prior to the final preparation of this thesis.

I am also indebted to the Ministry of Higher Education Malaysia (MoHE) and Universiti Teknologi MARA (UiTM) for the scholarship under Young Lecturer Scheme for providing the financial means which enable me to pursue my degree.

Last but not least, I would like to express my gratitude to my family for their patience, understanding and endless love that have given me willpower to complete this research. Hence, this thesis is dedicated to all those I have mentioned above, in no particular order.

Thank you.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of Study | 1
1.2 Literature Review | 2
 1.2.1 Stiff and non-stiff ODEs | 2
 1.2.2 Implicit block methods | 3
 1.2.3 Partitioning ODEs | 5
1.3 Problem Statement | 6
1.4 Objectives of the Study | 7
1.5 Significance of the Study | 7
1.6 Scope and Limitation | 7
1.7 Outline of the Thesis | 7
1.8 Summary | 8

CHAPTER TWO: PRELIMINARIES

2.1 The Initial Value Problem | 9
2.2 Linear Multistep Method (LMM) | 10
2.3 Stability Theory of Linear Multistep Method | 12
2.4 Stiff Systems | 13
2.5 Local Truncation Error | 14