Modelling of Belt-Driven High-Speed Laser Beam Manipulator

Computational Analysis on Thermal Performance and Coolant Flow of An Air-Cooled Polymer Electrolyte Membrane Fuel Cell

The Prediction of Transmission Loss Using Transfer Matrix Method

The Effect of EFI to the Carbureted Single Cylinder Four Stroke Engine

Parametric Study of Heat Transfer Enhancement Using Impingement of Multiple Air Jets

Springback Analysis of Thin Tubes Under Torsional Loading
1. Modelling of Belt-Driven High-Speed Laser Beam Manipulator
 Muhammad Azmi Ayub
 Pavel Hynek
 Mike Jackson

 W.A. Najmi W. Mohamed
 Rahim Atan

3. The Prediction of Transmission Loss Using Transfer Matrix Method
 M. A. Yunus
 A. A. Mat Isa
 Z. A. Rahman
 Hayder M. A. Ali Al-Assadi

4. The Effect of EFI to the Carbureted Single Cylinder Four Stroke Engine
 Idris Ibrahim
 Adibah Abdul Jalil
 Shaharin A. Sulaiman

 Niranjan Murthy
 V. Krishnan
 A. Chennakesava Reddy
6. Springback Analysis of Thin Tubes Under Torsional Loading

 Vikas Kumar Choubey
 Mayank Gangwar
 J. P. Dwivedi
Modelling of Belt-Driven High-Speed Laser Beam Manipulator

Muhammad Azmi Ayub
Faculty of Mechanical Engineering
Universiti Teknologi MARA (UiTM) Malaysia
Email: muhammadayub@salam.uitm.edu.my

Pavel Hynek
Mike Jackson
Mechatronic Research Centre
Loughborough University United Kingdom

ABSTRACT

This paper deals with a linear belt-driven servomechanism in the development of high-speed laser beam manipulator. The objectives of this paper are to accurately model the belt-driven mechanism and determine its resonance frequencies, phase margin and bandwidth. The use of timing belt to convert rotary to linear motion provides a cost-effective solution that can achieve high agility, high efficiency and long travel distance. However, the use of belt-drive causes uncertain dynamic behaviour and resonance problems because of its elasticity that leads to vibrations, compliance, and higher friction. Consequently, complex control strategies are required for effective control of the laser-beam trajectory planning. To reduce these problems, a complete information about system dynamics of the belt-driven mechanism is required and a comprehensive state-space model of belt-driven servomechanism is developed and presented in this paper. Frequencies response approach is used to determine the resonance for accurate control strategy of the manipulator trajectory planning.

Keywords: Belt-drive, modelling, high-speed, laser manipulator, system dynamic, resonance, bandwidth.
Nomenclature

\(T_m \) Motor torque
\(T_r \) Torque due the friction inherent in the mechanism.
\(J_o \) Moment inertia of rotor and motor gear
\(R_o \) Radius of motor gear
\(C_o \) Viscous damping coefficient of motor
\(\theta_o \) Angular displacement of motor shaft
\(T_i \) Torque at the driving pulley shaft gear
\(J_i \) Moment inertia of driving pulley gear
\(R_i \) Radius of driving gear
\(C_i \) Viscous damping of the driving gear
\(\theta_i \) Angular displacement of the driving gear
\(J_2 \) Moment inertia of driving pulley and gear
\(R_2 \) Radius of driving pulley
\(C_2 \) Viscous damping of the driving pulley
\(\theta_2 \) Angular displacement of the driving pulley
\(J_3 \) Inertia of driven pulley and slide carriage
\(R_3 \) Radius of driven pulley
\(C_3 \) Viscous damping of the driven pulley
\(\theta_3 \) Angular displacement of driven pulley
\(K_b \) Stiffness of timing belt
\(T_o \) Load torque on the motor gear due to the rest of the driving mechanism.
\(C_b \) Damping coefficient of the timing belt
\(R \) Radius of driving and driven pulley
\(M \) Mass of the laser head
\(F_a \) Force at the tight tension of timing belt
\(F_b \) Force at the slack tension of timing belt
\(F_i \) Pre-set initial tension of the timing belt
\(E \) Young Modulus of the belt
\(A \) Cross-sectional area of timing belt
\(L \) Length of timing belt
\(L_a \) Armature inductance of DC-Motor
\(R_a \) Armature resistance of DC-Motor
\(T_m \) Torque of DC-Motor
\(K_m \) Torque constant
\(i_a \) Armature current
\(E_b \) Back EMF
\(E_a \) Armature voltage
\(K_c \) Back EMF constant

Introduction

Several possible concept of 2D laser-beam manipulators for high-speed laser cutting machines have been developed by researchers [1, 2, 3]. In general, most of these concepts are designed not for cutting web materials which is thin and long materials such as web plastic, web fabric or web metal. Therefore, a new concept of the laser manipulator is proposed as shown in Figure 1 [4]. The laser beam manipulator employs one mirror with single-revolute and single-prismatic joint. This configuration can be achieved by mounting a scanner mirror to a four-wheel carriage. A dynamic focussing lens or flat-field scan lens is used in conjunction with this laser-beam manipulator. To ensure high rigidity of the laser-beam manipulator, the four-wheel carriage is mounted to a linear slide, which
Modelling of Belt-Driven High-Speed Laser Beam Manipulator

consists of two rectangular bars fitted with tracks. The scanner mirror is inclined at 45 degrees with respect to the linear movement of the slide. The mirror itself can rotate with respect to the axis of the scanner. A timing belt-mechanism is used to drive the linear motion of the slide in the x-direction which is the length of the timing belt needs to drive the laser head along the web materials. The movement of this timing-belt is driven by a geared servomotor, which is coupled with the pulley at the one end of the liner slide. In the y-direction, the rotational motion θ_y of the mirror can be actuated by the scanner. Hence, the trajectory of the laser beam can be controlled in the x-direction by the linear slide and in the y-direction by the rotational motion of the mirror. To monitor the position, the pulley at the other end of the linear slide is fitted with an optical encoder.

The use of timing belt in the drive mechanism provides a long stroke and cost-effective solution for the motion of laser beam in the x-direction at high speed, high agility and high efficiency [5]. However, the use of belt-drive causes uncertain dynamic behaviour and resonance phenomena because of its elasticity that leads to vibrations, compliance, and higher friction [6]. Consequently, belt-driven mechanism suffers from complicated control strategies in order to achieve high precision and accuracy of trajectory planning. A robust position control strategies such as sliding mode control can suppresses vibrations due to resonance and assures wide system bandwidth for high accuracy, high precision and rapid laser beam manipulation [7, 8, 9]. Alternatively, simple PID control strategy can be used as long as the resonance is outside the system bandwidth [10]. To implement these control strategies requires complete information about system dynamics of the belt-driven mechanism. Therefore, in order to attain higher performance laser beam manipulator, a more accurate model of

Figure 1: Belt-Driven Servomechanism of High-Speed Laser Beam Manipulator System
belt-driven mechanism is desired. This comprehensive dynamic model can be used to determine important parameters, such as resonance, phase margin and stability of the system, for accurate control strategy of the laser-beam trajectory planning.

Mathematical Modelling of the Dynamics System

As mentioned earlier, the laser-beam manipulator is driven by a timing belt and pulley mechanism to move the laser head laterally or longitudinally across the cutting table. This mechanism can be represented as inter-connected standard components of mass, springs and dampers, as shown Figure 2. It is assumed that the stiffness of the shafts is infinite for relatively small inertia load and the numbers of teeth on each gear are proportional to the radius of the gear for the gears to engage properly. There is neither backlash nor elastic deformation on the gear nor slip between the belt and the pulleys. With these assumptions the laser beam manipulator can be considered as two degrees of freedom system. By applying Newton’s second law of motion, two fundamental equations of motion to describe the dynamic behaviour of the system can be derived.

![Figure 2: Model of the Laser-Beam Manipulator](image)

The first equation of motion is for the driving pulley shaft at which the torque of the motor shaft is applied. The basic equation (1) at the motor driving shaft is as follows

\[
T_m = T_o + T_f + C_0 \frac{d\theta_0}{dt} + J_0 \frac{d^2\theta_0}{dt^2}
\]

(1)
The equation of motion for the torque transmitted to the driving pulley shaft can be written as follows,

\[
T_1 = R_2 (F_a - F_b) + C_2 \frac{d\theta_2}{dt} + J_2 \frac{d^2 \theta_2}{dt^2}
\]

(2)

The force \(F_i \) is the initial pretension force of the belts. \(F_a \) and \(F_b \) are forces due to the tight and slack belts tension respectively. These two forces as a result of the elasticity of the timing belt can be expressed as follows,

\[
F_a = F_i + \left[K_a \Delta(t) + C_a \frac{d\Delta(t)}{dt} \right]
\]

(3)

\[
F_b = F_i - \left[K_b \Delta(t) + C_b \frac{d\Delta(t)}{dt} \right]
\]

(4)

where elongation of belt, \(\Delta(t) = R_2 \theta_2(t) - R_3 \theta_3(t) \)

It is designed that the radius of both pulleys are identical and that the stiffness and damping coefficient of the tight and slack belt tension are identical. Hence the following design simplifications can be made: the radius of both pulleys, \(R_p = R_2 = R_3 \); the damping coefficient of belt, \(C_a = C_b \); and the stiffness coefficient of belt, \(K_a = K_b \).

From equation (3) and (4) above, the difference in tension force between the tight and slack belt can be obtained and deduced as follows,

\[
F_a - F_b = 2 \left[K_b \Delta(t) + C_b \frac{d\Delta(t)}{dt} \right]
\]

(5)

Substitute equation (5) into (2), produce the following equation (6),

\[
T_1 = 2R_p^2 \left[K_b (\theta_2 - \theta_3) + C_b \left(\frac{d\theta_2}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_2 \frac{d\theta_2}{dt} + J_2 \frac{d^2 \theta_2}{dt^2}
\]

(6)

If there is no power loss through the mechanism, \(T_0 = \frac{T_1}{R_1} R_0 \)
Eliminating T_0 and T_1 from equation (1) and equation (6), yields

$$T_m = \frac{T_1}{R_1} R_0 + T_f + C_0 \frac{d\theta_0}{dt} + J_0 \frac{d^2\theta_0}{dt^2}$$

$$T_m = \frac{R_0}{R_1} \left[2R_p^2 \left[K_b (\theta_2 - \theta_3) + C_b \left(\frac{d\theta_2}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_2 \frac{d\theta_2}{dt} + J_2 \frac{d^2\theta_2}{dt^2} \right] + T_f + C_0 \frac{d\theta_0}{dt} + J_0 \frac{d^2\theta_0}{dt^2}$$

Substituting variables $\theta_2 = \frac{R_0}{R_1} \theta_0$ and $\theta_2 = \theta_1$ into the above equation (7) and simplifying the equation, will give the first final equation of motion for the system

$$T_m = \frac{R_0}{R_1} \left[2R_p^2 \left[K_b \left(\frac{R_0}{R_1} \theta_0 - \theta_3 \right) + C_b \left(\frac{R_0}{R_1} \frac{d\theta_0}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_2 \frac{R_0}{R_1} \frac{d\theta_0}{dt} + J_2 \frac{R_0}{R_1} \frac{d\theta_2}{dt} \right] + T_f + C_0 \frac{d\theta_0}{dt} + J_0 \frac{d^2\theta_0}{dt^2}$$

$$T_m = 2R_p^2 K_b \left(\frac{R_0}{R_1} \right)^2 \theta_0 - 2R_p^2 K_b \left(\frac{R_0}{R_1} \right) \theta_3 + 2R_p^2 \left(\frac{R_0}{R_1} \right)^2 C_b \frac{d\theta_0}{dt} - 2R_p^2 C_b \frac{R_0}{R_1} \frac{d\theta_3}{dt} + C_2 \left(\frac{R_0}{R_1} \right)^2 \frac{d\theta_0}{dt} + J_2 \left(\frac{R_0}{R_1} \right)^2 \frac{d^2\theta_0}{dt^2} + T_f + C_0 \frac{d\theta_0}{dt} + J_0 \frac{d^2\theta_0}{dt^2}$$

Similarly, the second equation (9) of motion for the driven pulley can be formulated as follows,
Modelling of Belt-Driven High-Speed Laser Beam Manipulator

\[R_3(F_a - F_b) + C_3 \frac{d\theta_3}{dt} + J_3 \frac{d^2\theta_3}{dt^2} = 0 \] \hspace{1cm} (9)

Substitute equation (5) into (9), yields

\[R_3 \left[2R_p \left[K_b(\theta_2 - \theta_3) + C_b \left(\frac{d\theta_2}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_3 \frac{d\theta_3}{dt} + J_3 \frac{d^2\theta_3}{dt^2} \right] = 0 \]

\[2R_p^2 \left[K_b(\theta_2 - \theta_3) + C_b \left(\frac{d\theta_2}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_3 \frac{d\theta_3}{dt} + J_3 \frac{d^2\theta_3}{dt^2} = 0 \] \hspace{1cm} (10)

Substituting the variables \(\theta_2 = \frac{R_0}{R_1} \theta_0 \) and \(\theta_2 = \theta_1 \) into the above equation (10) and simplifying the equation, yields the following equation,

\[2R_p^2 \left[K_b \left(\frac{R_0}{R_1} \theta_0 - \theta_3 \right) + C_b \left(\frac{R_0}{R_1} \frac{d\theta_0}{dt} - \frac{d\theta_3}{dt} \right) \right] + C_3 \frac{d\theta_3}{dt} + J_3 \frac{d^2\theta_3}{dt^2} = 0 \]

\[2R_p^2 K_b \frac{R_0}{R_1} \theta_0 - 2R_p^2 K_b \frac{R_0}{R_1} \theta_3 + 2R_p^2 C_b \frac{R_0}{R_1} \frac{d\theta_0}{dt} - 2R_p^2 C_b \frac{d\theta_3}{dt} + C_3 \frac{d\theta_3}{dt} \]

\[+ J_3 \frac{d^2\theta_3}{dt^2} = 0 \] \hspace{1cm} (11)

Finally rearranging equation (11) to get the second equation of motion of the laser beam manipulator

\[2R_p^2 K_b \frac{R_0}{R_1} \theta_0 - 2R_p^2 K_b \frac{R_0}{R_1} \theta_3 + 2R_p^2 C_b \frac{R_0}{R_1} \frac{d\theta_0}{dt} + \left(C_3 - 2R_p^2 C_b \right) \frac{d\theta_3}{dt} \]

\[+ J_3 \frac{d^2\theta_3}{dt^2} = 0 \] \hspace{1cm} (12)

In addition to the above two equations (8) and (12), the servomotor could be modelled as standard permanent magnet dc-motor differential equations. For a constant field current and armature control dc motor, the torque developed by the motor is described by the equation (13) below

\[T_m = K_{m_a} i_a \] \hspace{1cm} (13)

The speed of an armature-controlled dc servomotor is controlled by the armature voltage \(E_a \). For a constant flux, the induced voltage \(E_b \) is directly proportional to the angular velocity \(d\theta/dt \). Therefore, the differential equation (14) for the armature current circuit is given by the Kirchoff’s voltage law as below
Based on the equations (8), (12), (13) and (14) above, the state-space equations are formulated and can be represented by five state variables and two control inputs as follows

\[
\text{State variables} \quad X(t) = \begin{bmatrix} i_a \quad \theta_0 \quad \frac{d\theta_0}{dt} \quad \theta_3 \quad \frac{d\theta_3}{dt} \end{bmatrix}^T
\]

\[
\text{Control input} \quad U(t) = [E_a \quad T_f]^T
\]

The detail state space model describing the overall dynamic system is described in Figure A of Appendix 1. This comprehensive state-space system description can be used to determine precisely the parameters that influence the dynamic performances of the laser beam manipulator for an accurate cutting process. Furthermore, various design parameters and motor selection can be made using this state space equation. Critical design parameters such as gear ratio, system bandwidth, pulley diameter, inertia, friction and PID control parameters can be determined and evaluated easily.

Simulation of Frequency Response

Frequency response analysis was carried out to determine the dynamic behaviour of the belt-driven laser manipulation system. Due to the elasticity and the damping of the belt, which is quite significant because of its long travel distance, it is desirable to predict its dynamic performance such as resonance, bandwidth and stability margin. This will ensure the speed and accuracy of the system to satisfy the design requirements. Two critical parameters, the effect of stiffness and the damping coefficient on the timing belt, were used to determine the performance of the timing-belt of the linear slide mechanism. An open-loop control strategy was used in the simulation of frequency response of the system. The simulation was done by using Matlab Simulink® Software as shown in Figure 3.

Friction was assumed linear and any non-linear behaviour due to friction was not taken into consideration in the simulation. The belt stiffness \(K_b\) and belt-damping coefficient \(C_b\) were the only variables in the simulation. All other system parameters such as inertia, bearing damping coefficient and motor viscous friction were kept unchanged. If the mechanical property of the timing belt is
Based on the equations (8), (12), (13) and (14) above, the state-space equations are formulated and can be represented by five state variables and two control inputs as follows:

State variables: \[X(t) = \begin{bmatrix} i_a & \theta_0 & \frac{d\theta_0}{dt} & \theta_3 & \frac{d\theta_3}{dt} \end{bmatrix}^T \]

Control input: \[U(t) = [E_a \ T]^T \]

The detail state space model describing the overall dynamic system is described in Figure A of Appendix 1. This comprehensive state-space system description can be used to determine precisely the parameters that influence the dynamic performances of the laser beam manipulator for an accurate cutting process. Furthermore, various design parameters and motor selection can be made using this state space equation. Critical design parameters such as gear ratio, system bandwidth, pulley diameter, inertia, friction and PID control parameters can be determined and evaluated easily.

Simulation of Frequency Response

Frequency response analysis was carried out to determine the dynamic behaviour of the belt-driven laser manipulation system. Due to the elasticity and the damping of the belt, which is quite significant because of its long travel distance, it is desirable to predict its dynamic performance such as resonance, bandwidth and stability margin. This will ensure the speed and accuracy of the system to satisfy the design requirements. Two critical parameters, the effect of stiffness and the damping coefficient on the timing belt, were used to determine the performance of the timing-belt of the linear slide mechanism. An open-loop control strategy was used in the simulation of frequency response of the system. The simulation was done by using Matlab Simulink ® Software as shown in Figure 3.

Friction was assumed linear and any non-linear behaviour due to friction was not taken into consideration in the simulation. The belt stiffness \(K_b \) and belt-damping coefficient \(C_b \) were the only variables in the simulation. All other system parameters such as inertia, bearing damping coefficient and motor viscous friction were kept unchanged. If the mechanical property of the timing belt is
homogenous throughout its entire length, the belt stiffness or elasticity of the belt can be derived from this equation (17),

\[K_b = \frac{EA}{L} \]

(17)

Results of Frequency Response

By using the above equation (17), the belt stiffness is equal to 12.16 N/mm for a typical value of Young Modulus of timing belt \(E = 570 \, \text{N/mm}^2 \), cross sectional area \(A = 16 \, \text{mm}^2 \) and length \(L = 750 \, \text{mm} \). In the first part of simulation, this value of belt stiffness remained constant while the value of the damping coefficient was increased from 0 to 1500 Ns/m. The frequency response results were plotted in form of bode diagrams as shown in Figure 4(a). As expected, the magnitude of the resonance was higher with the lower value of the belt damping coefficient. The belt-damping coefficient did not significantly affect significantly the frequency at which the resonance occurred. From the bode plot results, the bandwidth of the system was 29 rad/s with a phase margin of 290 degrees. The resonance frequency was 800 rad/s. Since the system bandwidth fell far below than resonance frequency, the system did not experience excessive vibration. Furthermore, the resonance was completely damped with the increasing value of damping coefficient. Normally, the actual value of the damping coefficient of the belt is approximately equal to 15000 Ns/m. This value of damping coefficient indicates that resonance will not happen within this system bandwidth. The bandwidth of the system can be improved significantly under the closed-loop control.

In the second part of simulation, the frequency response analysis was performed with no belt damping. The effect of different belt stiffness under no belt damping can be visualised in Figure 4(b). By changing the value of the
(a) Effect of Different Timing-Belt Damping Coefficients

(b) Effect of Different Timing-Belt Stiffness

Figure 4: Frequency Response Analysis for the Laser-Beam Manipulator
belt cross-sectional area \(A \) and length \(L \), four values of belt stiffness \(K_b \) were simulated. The values of stiffness \(K_b \) were increased from 1.2160 to 121600 N/m. The results showed that with a lower belt stiffness, the resonance will happen at a lower frequency. Even though a high value of the belt-damping coefficient will suppress the magnitude of resonance, it was important to select the belt stiffness where the resonance frequency was not within the range of system operating frequency. In this simulation, the specification of the other parameters are shown in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_0)</td>
<td>21.40 kgmm(^2)</td>
</tr>
<tr>
<td>(C_0)</td>
<td>10 (\mu)Nms/rad</td>
</tr>
<tr>
<td>(R_p)</td>
<td>20 mm</td>
</tr>
<tr>
<td>(K_m)</td>
<td>90 mNm/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_3)</td>
<td>550.00 kgmm(^2)</td>
</tr>
<tr>
<td>(C_3)</td>
<td>10 (\mu)Nms/rad</td>
</tr>
<tr>
<td>(E_a)</td>
<td>24V</td>
</tr>
<tr>
<td>(K_e)</td>
<td>108.2 mVs/rad</td>
</tr>
<tr>
<td>(R_s)</td>
<td>7.8 ohms</td>
</tr>
</tbody>
</table>

Conclusion

This paper introduces a comprehensive state space model of linear belt-driven mechanism in the development of rapid laser beam manipulator. This mathematic model is used to predict uncertain dynamics behaviour and resonance problems of the belt because of its elasticity that leads to vibrations, compliance, and higher friction. Frequencies response approach is used to determine the critical parameters of the system such as, phase margin, system bandwidth and the resonance of the system, for vibration suppression that can provide accurate control strategy of the manipulator. Instead of using complicated control strategies for vibration suppression, a simple controller such as PID controller was used to accurately plan the laser-beam trajectory within the system bandwidth to avoid exciting the resonance.

Acknowledgements

The authors would like to acknowledge the research grant given by the Festo Pty. Ltd. United Kingdom and Universiti Teknologi MARA, Malaysia.
References

\[
\dot{X} = \begin{bmatrix}
\frac{R_a}{L_a} & 0 & -\frac{K_m}{L_a} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-\frac{K_m}{J_{o2}} & 2R^2K_b\left[\frac{R_0}{R_1}\right]^2 & C_o + \left[\frac{R_0}{R_1}\right]^2 & \frac{2R^2K_b\left[\frac{R_0}{R_1}\right]}{J_{o2}} & \frac{2R^2C_b\left[\frac{R_0}{R_1}\right]}{J_{o2}} \\
0 & 0 & 0 & 0 & 1 \\
-\frac{K_m}{J_3} & 2R^2K_b\left[\frac{R_0}{R_1}\right] & 2R^2C_b\left[\frac{R_0}{R_1}\right] & \frac{2R^2K_b\left[\frac{R_0}{R_1}\right]}{J_3} & \frac{C_3 - 2R^2C_b}{J_3} \\
\end{bmatrix}
\begin{bmatrix}
i \\
\frac{1}{J_{o2}} \\
0 \\
0 \\
0 \\
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_0 \\
\dot{\theta}_3 \\
\end{bmatrix} + \begin{bmatrix}
0 \\
-\frac{1}{J_{o2}} \\
0 \\
0 \\
0 \\
\end{bmatrix}
\begin{bmatrix}
E_a \\
T_r \\
\end{bmatrix}
\]

where \(J_{o2} = J_o + J_2\left[\frac{R_a}{R_1}\right]^2 \)

Figure A: Detail State-Space Model for the Laser Beam Manipulator