SYNTHESIS AND CHARACTERIZATION OF
2,6-PYRIDINEDIHYDROXAMIC ACID AND ITS IRON(III) COMPLEX

SUHANA BT MISRAN

BACHELOR OF SCIENCE (Hons.) CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA

APRIL 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background
 1.1.1 Hydroxamic acid as a ligand 1
 1.1.2 Iron ions 6

1.2 Significance of study 8

1.3 Objectives of study 8

CHAPTER 2 LITERATURE REVIEW

2.1 Preparation of ligand and complexes 9

2.2 Characterization techniques
 2.2.1 Elemental analysis 12
 2.2.2 IR Spectroscopy 12
 2.2.3 1H NMR spectroscopy 13

CHAPTER 3 METHODOLOGY

3.1 Materials
 3.1.1 Chemicals 15
 3.1.2 Apparatus 15

3.2 Methods
 3.2.1 Preparation of 2, 6-pyridinedihydroxamic acid 16
 3.2.2 Preparation of Iron (III) complex 16

3.3 Characterization methods
 3.3.1 Elemental analysis 17
 3.3.2 FTIR spectroscopy 17
 3.3.3 1H NMR spectroscopy 18
CHAPTER 4 RESULTS AND DISCUSSION 19

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 28

CITED REFERENCES 29
APPENDICES 31
CURRICULUM VITAE 40
ABSTRACT

SYNTHESIS AND CHARACTERIZATIONS OF 2,6-PYRIDIDENEHYDROXAMIC ACID AND ITS IRON(III) COMPLEX

2,6-pyridinedihydroxamic acid (2,6-pyha) was synthesized and characterized their complexation properties with iron(III) metal. The percentages compositions of each elements in 2,6-pyha and iron(III) complex was determined by elemental analysis. It shows that the percentages C, H and N in 2,6-pyha are 44.48%, 3.63% and 21.12%. While in iron(III) complex, the percentages compositions are 32.72%, 3.60% and 18.74% which corresponds to C, H and N. It is indicated in the IR spectra of 2,6-pyha that the \(\nu_{O-H}\), \(\nu_{N-H}\) and \(\nu_{C=O}\) are at 2822.75 cm\(^{-1}\), 3153.31 cm\(^{-1}\) and 1669.48 cm\(^{-1}\) respectively. While the IR spectra for iron(III) complex shows the shifting value at N-H bond which then was confirmed there is a coordination mode between nitrogen from pyridine ring with iron(III) metal. The \(^1\)H NMR spectra shows for 2,6-pyha, the presence of O-H resonance at 11.85 ppm, N-H resonance at 9.331 ppm and H resonance from disubstituted pyridine ring at 8.137 ppm.