37643

UNIVERSITI TEKNOLOGI MARA

PERFORMANCE AND TECHNO-ECONOMIC ANALYSIS OF MONOCRYSTALLINE, MULTICRYSTALLINE AND AMORPHOUS SILICON-BASED STAND-ALONE PHOTOVOLTAIC POWER SYSTEM IN MALAYSIAN FIELD CONDITIONS

MOHD NIZAN KASSIM

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

July 2005

ACKNOWLEDGEMENT

In the name of Allah, Most Beneficient, Most Merciful. Alhamdullilah to Allah who has given me the time and ability to complete this Master's thesis project. I would like to acknowledge with gratitude the help, guidance, comments, suggestions and encouragement to those who had given me much invaluable support in the preparation of this research project.

My deepest gratitude is expressed to my main supervisor, Prof Madya Dr Sulaiman Shaari for his assistance and guidance through the duration of my research. My gratitude is also expressed to Prof Dr Kamaruzzaman Sopian as my second supervisor. Special expression of gratitude is due to my beloved family especially my wife who has been supporting and motivating me and is extended to all my friends.

Finally, my appreciation goes to those who have been directly and indirectly involved in the preparation and accomplishment of my thesis. Thank you for all the commitment and cooperation. May ALLAH bless all of you.

TABLE OF CONTENTS

TITL	E PAG	E		i			
ACKNOWLEDGEMENTS							
TABLE OF CONTENTS							
LIST	LIST OF TABLES						
LIST	LIST OF FIGURES						
LIST	OF PL	ATES		xvii			
ABSTRACT							
CHA		1					
1.1	Globa	al PV overview		3			
1.2	Mala	ysia PV overview		7			
1.3	PV S	ystem Costs		9			
1.4	Ratio	nale of the research		11			
1.5	Probl	em statement of the research		12			
1.6	Signi	ficance of research		13			
1.7	Objec	tives of the research		13			
1.8	Scope	e of the study		14			
CHA	CHAPTER TWO: THEORETICAL CONSIDERATION						
2.1	Solar	spectrum	· .	15			
2.2	Opera	ting principle of a solar cell		16			
2.3	Semic	Semiconductor properties					
	2.3.1	Atomic description of silicon		17			
	2.3.2	Doping		19			
	2.3.3	Energy level band gap		21			
	2.3.4	The p-n junction		23			
2.4	Semiconductor types of solar cell						
	2.4.1	Crystalline silicon solar cell		24			
	2.4.2	Amorphous silicon solar cell		26			
2.5	Photocurrent generation 2						

	2.5.1	Spectral Response	28
	2.5.2	Current, voltage and power generation	30
2.6	PV cir	cuit properties	31
2.7	PV ou	tput properties	33
2.8	Factors affecting output		
	2.8.1	Temperature	35
	2.8.2	Solar irradiance	37
2.9	Technical Performance Indicators		40
	2.9.1	Solar irradiation	40
	2.9.2	Total yield	42
	2.9.3	Final yield	43
	2.9.4	Performance ratio (PR)	43
	2.9.5	Efficiency	44
2.10	Economics		
	2.10.1	Cost of PV technology	45
	2.10.2	Cost of generation	46
СПУ		HREE: PV SYSTEM CONFIGURATION AND COMPONENTS	
UIAI		INTERIA DI DI DI CONTIOURATION AND COMPONENTS	

3.1	Overview of PV systems configuration		
	3.1.1	Stand-alone system	47
	3.1.2	Hybrid system	48
	3.1.3	Grid connected system	49
3.2	Photovoltaic generator		50
	3.2.1	Solar photovoltaic modules in a complete PV system	51
	3.2.2	Lamination	52
3.3	Batteries		
	3.3.1	Battery types and classifications	54
	3.3.2	Lead-acid battery	55
		3.3.2.1 Automotive battery	55
		3.3.2.2 Traction batteries	56
		3.3.2.3 Stationary batteries	56
		3.3.2.4 Sealed batteries	56

ABSTRACT

This research involves the use of renewable energy technology, vis-a-vis solar photovoltaic (PV) technology for providing power. It involves the design, installation, testing, commissioning, monitoring, performance analysis and economic evaluation of three different sets of stand-alone solar PV-battery power PVP systems in Malaysian field conditions, specifically in the Shah Alam area. There were three complete sets of PVP systems using three different types of modules with their own sets Balance of System (BOS) components. The PV modules used were amorphous silicon (a-Si), monocrystalline silicon (mono-Si) and multicrystalline silicon (multi-Si) technologies, each coupled to a bank of lead acid solar application batteries to meet the designed daily load demands. The monitoring of the PVP systems, along with the relevant environment parameters were done using an automated monitoring system. Details of each systems set-up are presented in this study. Based on the field data, a comparative study between the three PVP systems in terms of their techno-economic performance indices were then done. It was found that the a-Si modules gave the highest normalized annual yield at 901kWhkWp⁻¹, followed by the mono-Si at 760kWhkWp⁻¹ and then the multi-Si at 730kWhkWp⁻¹. The a-Si modules also gave the highest PR value at 56%, followed by the mono-Si at 47% and then the multi-Si at 46%. However in term of array efficiency the highest was the mono-Si at 8.8%, followed by the multi-Si at 7.4% and lastly the a-Si at 3.4%. The a-Si modules had the lowest voltage drop of -31.8mV°C⁻¹, the highest current rise of 4.9mA°C⁻¹ and the lowest power drop at -0.11W°C⁻¹, followed by the mono-Si at $-32.8 \text{mV}^{\circ}\text{C}^{-1}$, $4.19 \text{mA}^{\circ}\text{C}^{-1}$ and $-0.7 \text{W}^{\circ}\text{C}^{-1}$, lastly the multi-Si at $-39.4 \text{mV}^{\circ}\text{C}^{-1}$, 3.2mA°C⁻¹ and -0.17W°C⁻¹ respectively. In addition, the NOCT values were: a-Si module at 38°C, multi-Si at 57°C and mono-Si at 43°C and these field values differ from the manufacturer specification by 17%, 9% and 0% respectively. Thus it was proven that the a-Si modules worked best in an equatorial climate country. The costs of PV technology and energy generations from the Systems I, II and III were RM 11.7 per kWh, RM 6.4 per kWh and RM 6.2 per kWh respectively which are still high compared to that from the grid. Several recommendations for further study have also been included at the end of this thesis.