UNIVERSITI TEKNOLOGI MARA

DESIGN OF PLASMA ANTENNA FOR RECONFIGURABLE BEAM STEERING TECHNIQUE

HAJAR BINTI JA'AFAR

Thesis submitted in fulfillment of the requirement for the degree of **Doctor of Philosophy**

Faculty of Electrical Engineering

January 2016

ABSTRACT

The industrial potential of plasma technology is well known and excellent demonstrated in several processes of microwave technology, which incorporate some use of an ionized medium. In vast majority of approaches, the plasma, or ionized volume, simply replaced a solid conductor. Highly ionized plasma is essentially a good conductor, and therefore plasma filaments can serve as transmission line elements for guiding waves, or antenna surfaces for radiation. Plasma antenna is a kind of antenna that radiate electromagnetic wave (EM) energy based on ionized gas instead of metallic conductor in antenna design. In this research work, the development using plasma medium as a conductor element instead of metal medium is investigated. Three new design antenna by using plasma concepts were proposed; namely cylindrical monopole plasma antenna using electrode-less discharge tube, monopole plasma antenna using fluorescent tube and reconfigurable plasma antenna array. The research described in this project introduces the analysis of cylindrical monopole plasma antenna. Three types of gases with three different pressure which are Argon gas, Neon gas and Hg-Ar gas (mixture of Argon gas and mercury vapor) with pressure at 0.5 Torr, 5 Torr and 15 Torr respectively is used in this research to observe the interaction between plasma medium and radio frequency (RF) signal. The containers that use to fill the gas are namely electrode-less discharge tube. The technique that used in this experiment to generate plasma is using Dielectric Barrier Discharge (DBD). The monopole plasma antenna using fluorescent tube is designed at frequency 2.4 GHz which is aim in wireless application. The commercially fluorescent lamp is used as a plasma antenna. Coupling technique was used in this design. In the reconfigurable plasma antenna array, the behavior of the reconfigurable antenna array system using plasma medium has been investigated and discuss with respect to the beam shaping characteristics. The reconfigurable plasma antenna array is capable of scanning the radiation pattern over 360°. These results confirm that the main beam directions can be directed in the following directions depending on the states of switches which are 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330°. The simulated and measured results are presented and compared, to demonstrate the performance of the proposed antennas.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEGMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xix
LIST OF ABBREVIATIONS	XX
	1
CHAPTER ONE: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	4
1.3 Objectives	6
1.4 Scope of Work	6
1.5 Thesis Organization	7
CHAPTER TWO : BACKGROUND AND LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Fundamental of Plasma	10
2.3 Ionization Process In Plasma Medium	11
2.4 Method of Generating Plasma	13
2.4.1 Electrode Discharge Tube	13
2.4.1.1 Plasma Generated by Using DC and AC	14
2.4.2 Electrode-less Discharge Tube	19
2.4.2.1 Capacitively Discharge Plasma(CDP)	19
2.4.2.2 Inductively Coupled Plasma (ICP)	22
2.4.2.3 Microwave Plasma	23
2.4.2.4 Radio Frequency (RF) Plasma	25

2.4.2.4 Radio Frequency (RF) Plasma

2.4.2.5 Laser	27
2.5 Plasma Antenna Technology	29
2.5.1 Coupling Technique	29
2.5.2 Shape of Plasma Antenna	35
2.5.3 Reconfigurable Plasma Antenna	38
2.6 Summary	44
CHAPTER THREE: RESEARCH METHODOLOGY	46
3.1 Introduction	46
3.2 Research Methodology	47
3.3 Fundamentals Parameters of Plasma Physics for Plasma Antenna	52
3.3.1 Plasma Frequency	52
3.3.2 Plasma Collision Frequency	54
3.3.3 Conductivity of the Plasma Medium	56
3.3.4 Complex Dielectric Permittivity of the Plasma Medium	59
3.4 Estimation of Plasma and Collision Frequency	60
3.5 Drude Dispersion Model for Designing Plasma	64
3.6 Fabrication and Measurement Setup	65
3.6.1 Fabrication Process	65
3.6.1.1 Cylindrical Monopole Plasma Antenna Using Electrode-Less	65
Discharge Tube	
3.6.1.2 Monopole Plasma Antenna using Fluorescent Tube	68
3.6.1.3 Reconfigurable Plasma Antenna Array	70
3.6.2 Measurement Setup	73
3.6.2.1 Return Loss Measurement	73
3.6.2.2 Radiation Pattern Measurement	74
3.6.2.3 Radiation Signal Measurement	75
3.6.2.4 Measurement of Radiation Signal from Monopole Plasma	77
Antenna as a Transmitter	
3.6.2.5 Measurement of Radiation Signal from Monopole Plasma	77
Antenna as a Receiver	
3.6.2.6 Measurement of Signal Strength Monopole Plasma Antenna	78

CHAPTER FOUR: A CHARACTERISTIC OF CYLINDRICAL	
MONOPOLE PLASMA ANTENNA	80
4.1 Introduction	80
4.2 Electrode-Less Discharge For Dielectric Barrier Discharge	81
4.3 Design of Cylindrical Monopole Plasma Antenna	82
4.3.1 Design Procedure	82
4.3.2 Structure of Cylindrical Monopole Plasma Antenna	83
4.4 Analysis of Cylindrical Monopole Plasma Antenna	84
4.4.1 Effect of Plasma Frequency on Complex Permittivity	84
4.4.2 Effect of Different Pressure	87
4.4.2.1 Argon Gas	87
4.4.2.2 Neon Gas	89
4.4.2.3 Hg-Ar Gas	92
4.4.3 Comparison of Different Gas Performance	94
4.5 Results and Discussion	100
4.6 Summary	104

CHAPTER FIVE: DEVELOPMENT MONOPOLE PLASMA ANTENNA USING FLUORESCENT TUBE FOR WIRELESS TRANSMISSION

5.1 Introduction	106
5.2 Mercury – Argon (Hg-Ar) Fluorescent Lamp	107
5.3 Parameter Study On A Monopole Plasma Antenna Using Fluorescent Tube	108
5.3.1 Effects of the Length of Monopole Plasma Antenna	111
5.3.2 Effects of Diameter Plasma Antenna	112
5.3.3 Effects of Parameter for Coupling Sleeve	112
5.4 Analysis Between Monopole Plasma Antenna and Metal Antenna	115
5.5 Simulation and Measurement Results	117
5.6 Wireless Signal Transmission Experiment	119
5.6.1 Experiment Radiation Signal	119
5.6.2 Monopole Plasma Antenna as a Transmitter	121

78

106