
Fakulti Teknologi Maklumat dan Sains Kuantitatif 

JURNAL 
TEKNOLOGI 
MAKLUMAT 
DAN SAINS 
KUANTITATIF 

KANDUNGAN Muka Surat 

To (Start With) OOP, Or Not OOP: That is Not The Question 
Syed Ahmad Aljunid 

Penilaian Tingkah Laku Taklinear Menggunakan Kaedah Empirik 
Norazan Mohamed Ramli 
Habsah Midi Jt.-j%. • 

Towards Developing A Risk Charter for Software Development Projects 
Noor Habibah Arshad 

Comparative Performance of Computational Techniques in Retrieving 
Malay Text 
Zainab Abu Bakar 

Algorithm of Magnetic Flux Density on a Plane Generated by a Finite 
Length Current Source 
Rashdi Shah Ahmad, Tahir Ahmad, Chew Soon Leong 

Suatu Kaedah Menganggar Kos Perisian Berasaskan Spesifikasi Formal 
Abdullah Mohd Zin, Maridah Mohamad Shah, Abd Malik Md Yusof 

Solving a Constraint Satisfaction Problem by Backtracking Intelligently: 
A Case Study 
Muthukkaruppan Annamalai 

An Empirical Investigation into the Critical Success Factors Used by it 
Companies of Various Sizes to Adopt Internet Technology 
Lloyd Tarn Yew King 

Teknologi Maklumat dan Telekerja: Satu Tinjauan Awalan dan 
Implikasinya di Malaysia 
Balakrishnan Parasuraman 

19 

37 

51 

63 

75 

87 

99 

115 



TO (START WITH) OOP, OR 
NOT OOP: THAT IS NOTTHE 
QUESTION* 

Syed Ahmad Aljunid 
Jabatan Sains (Computer 
Fakulti Teknologi Makiumat dan Sains Kuantitatif 
Universiti Teknologi MARA (UiTM) 
40450 Shah Alam, Selangor, Malaysia 

ABSTRACT 

Lately, in UiTM, there has been a hue and cry against starting programming course 
with object-oriented programming (OOP), and opting to get back to the procedural 
paradigm first. This paper is an attempt to dismiss these notions. It argues that the 
wrong question has been asked. That problem is trivial. Instead, the more pressing 
question is: "How, in the present state of rapidly changing and expanding IT field, can 
we effectively teach fundamental programming principles and computer problem solving 
methodology without clouding the students with syntax and nontransparent tools?" 
Another related question is "How can we make programming attractive to the new-
students? " Essentially, it is not the question of when, but how. And what too. In short, 
we should actually revise our programming pedagogy thoroughly as well as review 
our programming curriculum. We present our case based on Jhe successful 
implementation of the minimalist cum black box cum 4-stage approaches in introducing 
OOP to beginners of programming in various institutions Our solution nevertheless 
takes into consideration our own background and constraints. 

Keywords: Black-box approach; Minimalist approach; Object-oriented 
programming; Teaching of programming 

Tel: +603 5543 5472 
e-mail: aljunid@tmsk.itm.edu.my 

' Adopted from William Shakespeare's Hamlet, Act III, Scene 1, line 67. 

mailto:aljunid@tmsk.itm.edu.my


Syed Ahmad A ljunid 

INTRODUCTION 

UiTM has been teaching object-oriented programming (OOP) for its computer science 
majors since 1996. When the new curriculum was implemented in 1997, OOP was and is 
still being taught from the first semester onwards. Lately, there has been a hue and cry 
against starting programming course with OOP, and opting to get back to the procedural 
paradigm first. This paper is an attempt to dismiss these notions. It argues that even though 
these are genuine concerns, the wrong question has been asked. Instead, we propose to 
view the problem more holistically by restating it as two distinct but related questions: 
"How, in the present state of rapidly changing and expanding IT field, can we effectively 
teach fundamental programming principles and computer problem solving methodology in 
the first programming subject without clouding the students with syntax and nontransparent 
tools?" and "How can we make programming attractive to the new students?" Although our 
focus remains the first programming subject, we will approach the problem more holistically 
by viewing and reviewing the whole programming syllabus. Essentially, it is not the question 
of when, but how. In short, we should actually revise our programming pedagogy thoroughly. 
(Aljunid, 2000) 

Nevertheless, we uphold the principle that changes in curriculum must be driven by 
data and facts rather than anecdotes, mere perceptions or intuitions. Thus we present our 
case based on the successful implementation of the minimalist cum black box cum 4-stages 
approaches in introducing OOP to beginners of programming in various institutions around 
the globe. Our solution nevertheless takes into consideration our own background and 
constraints. 

We begin by viewing the current state of teaching of programming in UiTM in Section 
2. Then, we will look at a few important considerations for reviewing the computing 
curriculum in general and the programming curriculum in particular in sections 3 and 4 
respectively. In Section 5, we will discuss the teaching of programming in CS1 while in 
Section 6, we present several case studies of adopting OOP in introductory programming 
subjects using various ingenious pedagogical approaches before presenting our proposed 
solution in Section 7. 

CURRENT STATE 

Our faculty in UiTM has progressed over the years since starting the first computer 
science program in Malaysia in 1969. Thereafter, we have addressed the issue of teaching 
of programming periodically. In 1990, acknowledging the tendency among instructors to 
overdo with language constructs rather than the application of programming principles and 
methodologies, one of the resolutions of the 1990 UiTM Teaching of Programming Workshop 
(Aljunid, 1990) was "the teaching of programming must be focussed on application rather 
than syntax". The focal point is problem solving; 'Programming in X Language' rather than 
'X Language Programming'. 

2 Mid 3, Bil 1, Sept 2001 



To (Start With) Oop, Or Not Oop: That Is Not The Question 

However, over the years, this problem still persists, albeit at a lower rate, in introductory 
programming subjects. This problem was compounded when the new programming 
curriculum was implemented in 1997 for the Diploma in Computer Science (DCS) program 
(see Table 1 below), which is the feeder for our BSc (IT) program. Although we have 
spread out the OOP contents over three semesters using a single language, i.e. C++, the first 
subject, Fundamentals of Computer Problem Solving, continue to have problems. (ITC 
120 contains, among others, computer problem solving, OOP concepts, objects, basic control 
constructs and classes) 

Table 1: Current UiTM DCS/BSc (IT) programming curriculum 

Code 

ITC 120 

ITC 160 

ITC 210 

ITC 260 

ITS 330 

ITC 265 

ITC 421 

Subject Name 

Fundamentals Of Computer Problem 
Solving 

Object Oriented Programming I 

Object Oriented Programming II 

Data Structures 

Information System Development 

Commercial Programming 

Programming Paradigms 

Sem 

DCS 

DCS2 

DCS3 

DCS4 

DCS5 

-

BSc(IT)l 

CrHr 

14 

4 

4 

4 

4 

4 

4 

Category 

Core 

Core 

Core 

Core 

Core 

Elective 

Core 

Firstly, instructors differ as to when is it best to impart the rudimentary programming 
constructs associated with procedural programming such as control structures in this OOP-
based subject. One camp prefers to start off with computer problem solving using these 
control constructs in the procedural paradigm and later introduce the OO implementation. 
The other camp prefers the computer problem solving to be taught from day one using the 
OO paradigm, and utilizing this control constructs set in the OO paradigm too. Of course, 
using C++ as the program language allowed such differences. 

These instructors not only have different backgrounds, experiences and biases but also 
have different perceptions as to the receptiveness of their respective students in following 
their classes. Each has their own set of textbooks or references to back their particular 
approaches. Due to the fact that these roughly five hundred students for each intake sit for a 
common semester exam for all the six different UiTM campuses offering DCS in the country, 
uniformity of instruction has some degree of importance. 

We argue that this problem is actually trivial. Although we personally would prefer the 
second approach, we opt to put the issue aside now*. After all, it makes no difference for 
the students in answering the exam paper. We further recognized that most instructors teach 

* Refer to Section 5 (OOP in CS1) for a detail discussion on this issue. 

Jilid 3, Bil 1, Sept 2001 3 



Syed Ahmad Aljunid 

it in the way they were taught. Incidentally, this 'approach' may not be pedagogically correct. 
For the time being however, instructor could and should continue teaching the first 
programming subject as to what constitute to him/her the best approach to deliver the materials 
until our proposal is accepted and the new curriculum is implemented. 

Secondly, we noted, based on inputs from the instructors, the students are caught up 
with OOP nomenclature and concepts as well as C++ syntax such that they miss seeing the 
big picture. For example, defining and implementing C++ classes early in the semester peg 
down the students. The actual focus should be on computer problem solving and not on its 
tools per say. These nontransparent tools are presented to the new students too early such 
that they tend to block them for acknowledging the systems perspective. 

What we need is gradual approach that will gently infuse the 0 0 principles and 
methodology transparently in a systems perspective of problem solving so that they can 
interrelate between the objects or processes. 

Thirdly, the students cannot appreciate the tiny, unrealistic problems that are given to 
them to be 'solved'. For example, building classes like Circle which only has methods like 
setCircle(r), getRadiusQ, getAreaQ and getCircumference(); these unrealistic problems 
and text-based solutions do not attract them to programming nor show them the application 
of necessary skills for a well-designed computer solution. 

We urgently need to overcome this problem by injecting real meaningful problems and 
GUI solutions as part of our attraction-grabbing maneuver (but without compromising core 
programming skills). In fact, the importance of objects and OOP will be driven home better 
via this approach. 

In the end, we ask ourselves whether the students have developed the necessary and 
better problem solving skills as a result of exposure to the first programming subject. 

CHANGING THE COMPUTING CURRICULUM 

To design flexible computing programs that can keep pace with rapidly changing needs, 
Turner (1997) suggested among others, to (i) pay attention to pedagogy, (ii) shorten the 
time for adaptation of new curricula, and (iii) maintain stronger ties with the industry for 
faster feedback. He acknowledged that the role of pedagogy and the effective use of 
technology in computing programs have been neglected for the most part. 

Taking into account the rapid changes in the IT field, the latest computing curricular 
guidelines from ACM/IEEE (Engel and Roberts, 2000), the call from the academia, the 
feedback from the IT industry as well as UiTM's current state and needs, we conclude there 
are at least three main issues that need to be addressed in designing the new computer 
science curriculum: 

a) Inculcate systemic thinking and incorporate systems perspective of problem-solving 
b) Emphasize skills in cooperative problem solving 
c) Broaden the computing horizon 

4 Mid 3, Bit I, Sept 2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question 

Inculcate Systemic Thinking And Incorporate Systems Perspective Of Problem-Solving 

In the March 2000 draft of the Computing Curricula 2001 (CC 2001), The Joint Task 
Force on Computing Curricula noted that computing discipline has become much broader 
and had undergone various technical and cultural changes (Engel and Roberts, 2000). This 
rapid evolution of the computing discipline requires us to view with a systemic thinking 
into a lot of areas including problem solving. 

The academia has also noticed this lack of systemic thinking phenomenon. Freeman 
(1997) from Georgia Tech noted that we can no longer view the components of the entreprise 
information system and their behaviors in isolation. He urged, "We must begin to take a 
systems perspective." Meanwhile, Stokes (1997) from Brigham Young University suggested 
to add a systems view of problem solving in calling for changes in our educational approach. 
The student must understand the dire need to integrate components into a comprehensive 
whole. They must be given the chance to develop complete systems as well as experience 
the consequences of incomplete designs. 

With respect to computer problem solving and programming, Decker and Hirshfield 
(1993) succinctly described the present predicament: "It should not surprise us that our 
students can't appreciate the 'big picture' when what we spend most of our time teaching 
them in CS 1 is the 'little picture.'" Apart from the nontransparent teaching tools mentioned 
earlier, the choice of bottom-up enabled programming languages like Pascal and C also add 
to the crisis. These languages promote the tactical paradigm by focusing primarily on the 
details of coding and algorithms. 

Feedbacks coming in from the industry also verified this problem. Haines (1997) from 
Boeing stated that one of the two outstanding reasons for project inadequacies and failures 
is the general lack of systemic thinking. Failing to grasp the whole picture of how processes 
interrelated made the projects doomed for failure. He further acknowledged the shortage of 
computing personnel with skills in systemic thinking, problem solving and communication. 

Emphasize Skills In Cooperative Problem Solving 

Stokes (1997) also suggested the above in calling for changes in our educational approach. 
Noting that learning to work with people is an essential skill for computing projects, he 
proposed small-group problem-solving exercises to help all participants understand the 
concepts better and promote teamwork. 

Cooperative problem solving also emphasizes software reusability through the usage 
of components and class libraries. Software reusability drives home the "don't reinvent the 
wheel" mantra. In the same breath, teaching the value of using other people's well-developed 
code could increase the quality and stability of team-derived solutions. 

Mid 3, Bil 1, Sept 2001 5 



Syed Ahmad Aljunid 

Broaden The Computing Horizon 

In the broadening of the computing horizon, the dramatic growth of computing and 
especially the pervasiveness of the WWW are crystal clear. The CC 2001 Task Force has 
not only acknowledged this emerging trend but has made it one of the central pillars for 
developing the new curricula. The number of knowledge areas has increased from nine in 
the CC'91 (Tucker et.al, 1991) to fourteen in CC 2001. Denning (1999), the current chair 
of the ACM Education and a member of the CC 2001 Task Force, has listed 24 different sub 
fields in the IT or computing or "informatics" profession. 

Computing, which has strong historical roots in engineering, mathematics, and science, 
has finally emerged from these traditional ties. We, the computer scientists and engineers, 
must accept this reality and chart our new direction accordingly. We can no longer claim IT 
or computing to be our sole property. We can never separate computing from the emerging 
application areas and must work hand in hand with 'the news boys in the blocks'. 

CHANGING THE PROGRAMMING CURRICULUM 

In our opinion, the tools especially the programming language used in teaching of 
programming should at the very least enable and at best enforce a few guiding principles of 
programming. Spelt out by Kernighan and Plauger (1981) in their famous book, "Software 
Tools in Pascal", three of the principles are: 

a) Keep it simple - clean, simple and clear code. 
b) Controlling complexity is the essence of computer programming. Therefore, build 

it in stages, by concentrating first on the central and most important task. 
c) Let someone else do the hard part — build on what you/others have done. 
Although these principles were originally listed twenty years ago, they are still valid 

nowadays. We will dwell further on these principles in our solution in Section 7. 
The IEEE/ACM CC'91 Task Force (Tucker et al, 1991) has made a number of 

recommendations on programming. We highlighted two of the more important points here. 
First, fluency in a programming language is an essential attribute of the mastery of 
programming. This implies there must be one dominant language in the curriculum. Secondly, 
teaching of programming must be in at least two other paradigms, such as functional, logic 
or OO besides the procedural paradigm. This knowledge will enhance both the student's 
appreciation and understanding of the various paradigms and tools currently available to 
solve a variety of problems in different domains. 

In changing the computing curriculum and to answer our two initial questions, we openly 
acknowledge there exist more than one feasible path. At the same time, neither is we 
condemning structured programming nor gospeling OOP per say. We choose OOP because 
of three important reasons. 

6 Jilid 3, Bil 1, Sept 2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question" 

Firstly, OOP is the highly preferred mechanism in implementing systems view and 
inculcating systemic thinking right from the beginning. It enables us to look at a problem 
holistically and determine what software components would be required to produce a new 
computer-based solution. By abstracting entities into classes of objects, an organized overall 
view is obtained of the problem domain. By encapsulating implementation, the details 
have been well hidden when the problem is initially attacked. By enforcing message passing 
between objects, the importance of good and meaningful interfaces between inter-related 
elements in a system is driven through. By organizing the relationship between related 
classes of objects into a hierarchy format, the approach of designing programming solutions 
based on generalities is realized. 

Secondly, OOP is the successful mechanism in applying cooperative problem solving 
in general and software reusability in particular. Initially coined in the Unix world as the 
"Don't reinvent the wheel" approach, software reusability was only realized with the advent 
of OOP. This is not just due to the inheritance property in OOP but more with the emergence 
of software components, design patterns and class libraries, which are all synonymous 
with OOP. 

Thirdly, since OOP has been adopted, we preferred a feasible solution, which introduces 
changes gradually. In our eagerness to embrace new approaches and methods, we need not 
adopt the wholesale revamping of the existing system. 

OOP IN CS1 

The First Programming Language: Requirements And Objectives 

Before we discuss the merits of OOP in CS1, let us first ask ourselves: is there a 
requirement for a first programming language? What are its objectives? There have been a 
substantial number of empirical researches on the most suitable type of language to teach 
programming concepts. Of course, the target novice group, whether secondary (high) school, 
college or university level does play a major role in deciding the language. In general, de 
Boulay et. al. (1989) concluded that a first programming language should have "syntactic 
simplicity with few special cases to remember". Walsh (1989) noted that syntactic difficulties 
might affect the student's ability to produce a logically sound, working program. 

We formulated that among the objectives for a first programming language are: 
a) It must be an effective medium in conveying the current fundamental programming 

principles, including those mentioned in Section 4, and computer problem solving 
methodology. 

b) It allows students to see and solve problems systematically. 
c) It enables students to make faster progress and deeper understanding of computer 

problem solving. 
d) Its environment encourages and develops skills in cooperative problem solving. 

Jilid3, Bill, Sept2001 7 



Syed Ahmad Aljunid 

Background On Teaching Of Programming In OOP For CS1 

The common programming languages for teaching are essentially the same ones that 
we have used for the past 20 to 30 years. These include BASIC, FORTRAN, Pascal and C. 
Due to discontent with dominant, Pascal based curriculum taught in mid 1970's, several 
paths have surfaced. These include 

• Functional programming - Scheme, LISP 
• Procedural programming— C. (since too complex for novices, a subset of C is 

used), Modula 2, Turing. 
• OOP — C++, Java, Smalltalk, Eiffel 
• GUI based: Visual Basic, Visual C++, C++ Builder 
There are two different schools of thought on using OOP in CS1. One believes that 

structured programming must be taught first before OOP while the other believes in teaching 
OOP from day one. For example, Deitel belongs to the first school (1999) while Horstmann 
is a member of the second. Deitel and Deitel (1997). 

The first school judges that jumping into objects at first is just too much for novices 
since new objects must be created first (Meter and Miller, 1994). The students must learn 
about objects, class specifications and definitions in order to program. Meanwhile, the 
second school considers moving from a procedural paradigm to an 0 0 paradigm in one 
semester is too much for students to cope with. Instead, the approach taken is to gently 
introduce OOP in stages to students However, there is a growing consensus among the OO 
community to steep students in the 0 0 paradigm before exposing them to the gritty details 
of hybird procedural/OO languages such as C++ (Meter and Miller, 1994). This is in tandem 
with our stand as stated earlier. 

Generally, there is currently more acceptance of teaching OOP in CS1. It was even 
accepted more than five years ago. At the 1994 ACM SIGCSE Symposium on Computer 
Science Education, which discussed on integrating OOP concepts into the undergraduate 
curriculum, a large number of attendees advocated teaching OOP (in a variety of languages) 
in the first programming course for majors (Hirshfield et al, 1994). 

The Challenge 

A. The Instructors 

In reality, the instructors themselves primarily inhibit the acceptance of OOP for CS1. 
Their reservations stemmed from misleading OOP myths. Decker and Hirshfield from 
Hamilton College tackled this issue wittily in a very interesting paper they presented at the 
ACM's SIGCSE Conference in 1994. Cynically, it was entitled "The Top 10 Reasons 
Why Object-Oriented Programming Can't Be Taught in CS 1" (Decker and Hirshfield, 
1993), They noted, "Many of the reasons we came up with for not using OOP in CS 1 are 
seen to reflect our lack of understanding of the paradigm, our rear of the leanguate, and our 

8 Mid 3, Bil 1, Sept 2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question 

past experience teaching Pascal and the procedural paradigm." It was the dreadful paradigm 
shift where all things fall back to zero that haunted them. Among the OOP myths that were 
dispelled by Decker and Hirschfield are " OOP is too hard for my CS 1 students!" (Reason 
#9), "The dreaded paradigm shift!" (#8) And "It screws up the rest of our curriculum!" (#3). 
The first and most important reason is of course "It's too hard for us!" 

B. The Environment 

The development environments used to teach OOP should include tools, which support 
OOP. However, Rolling and Rosenberg (1966) noted that, existing environments fail to 
fully support the object-oriented paradigm. They suffer from two deficiencies: insufficient 
object support and insufficient visualization support. 

Object support allows objects to exist independently. This is the basis of the 0 0 paradigm. 
It facilitates the possibility of incremental application development. However, the program/ 
procedure-oriented paradigm is still used in most environments. It is still used to build an 
application with exactly one entry point that can be compiled and executed only after all its 
parts have been completed. 

Visualization support refers to structure visualization and manipulation techniques. 
Graphical visualization techniques should be used to display relationships between classes 
and objects while manipulation using the graphical or textual representation of a class should 
be possible interchangeably. 

These deficiencies must be addressed to create an effective OOP development 
environment. However, these are beyond the scope of our paper. 

CASE STUDIES OF TEACHING OOP USING VARIOUS PEDAGOGICAL 
APPROACHES 

Case-Study 1: An American College Level 
Approach: Black-box, minimalist, 4-stages 
Language: Object Pascal 
Target group: 1st year 
Duration: one semester 
Type: Actual Implementation 
Rick Decker and Stuart Hirshfield from Hamilton College (Decker and Hirshfield, 1993) 

A. The Problem 

Hamilton College, like most other higher institutions, taught CS 1 using Pascal then. As 
widely known, Pascal and any other procedural languages impose an algorithmic method of 

Jilid3, Bill, Sept2001 9 



Syed Ahmad Aljunid 

problem solving. This enforces a tactical or bottom up approach, which focus on the details 
of coding. The principles of program design are not enforced by procedural languages. 

As a result, the students generally have difficulty in analyzing and designing large-
scale programs. Most could not produce reliable, verifiable, reusable and maintainable 
code. 

This situation provoked a reaction: "Why are we investing an entire first course in 
teaching the equivalent of modern-day assembly language?" when the issues of systemic 
thinking, systems perspective of software analysis and design are missing? 

B. The Solution: OOP in CS 1 using Object Pascal 

Object-oriented languages, on the other hand, allow us to concentrate initially on top-
level design considerations, and to progress — in true top down fashion — to working, 
workable programs that embody the principles of software engineering and program style. 

Black box (Stehlik, 1993): Most of the program is hidden from the students, and the 
code is only exposed on an "as needed" basis. This approach not only mimics the process 
by which much software is developed but also allow the students to learn as apprentices 
from experts. (Meyer, 1993). 

Minimalist: The details of the programming world, in particular, the algorithmic details 
of the language, are revealed slowly and only as needed to illustrate the principles of objects. 
These include algorithmic constructs like assignments, selections, and loops. 

4-stages: Four stages are employed, (i) Initially, students use the object world by 
interacting with sample programs that are provided to illustrate specific OOP and Object 
Pascal features, (ii) As they become more familiar with objects, students are exposed to the 
details of the world so that they can read the implementations of the objects that they have 
been using, (iii) Then, they are shown how they can modify and extend the existing object 
world to suit the needs of a particular program. (iv)Finally, they are taught how to define 
their own objects. 

Central to each set of lab exercises is a full-scale, working, sample program. 
Results: With appropriate pedagogy, OOP can be taught from the start. This approach 

leads students naturally to appreciate the virtues of OOP in their first programming 
experiences by allowing—even encouraging—them to work like professional programmers 
from the start of their programming careers. 

10 Jilid 3, Bil 1, Sept 2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question 

Case-Study 2: A Top American University Level 
Approach: Literate, situated, black-box, minimalist, case-study based 
Language: Karel the Robot, Pascal, Object Pascal 
Target group: non-CS majors 
Duration: one semester 
Type: Experiential 

Glem Meter and Philip Miller from the School of Computer Science, Carnegie Mellon 
University (Meter and Miller, 1994) 

Literate programming: visual development environment (Pascal Genie) with multiple 
views and visual debugger. 

Situated programming: teaching (00) programming using an example thoroughly 
embedded in a domain other than computer science 

Case study based: Students learn by working in programs developed by experts. 
OOP in CS1 implementation: Start with procedural programming with Karel the Robot 

for 2 weeks, then with Pascal (up to arrays of records and searching), while the final third of 
the semester is done using Object Pascal and artificial life (as the application domain) using 
an example thoroughly embedded in a totally non-computer science domain. 

Results: The students were intellectually engaged. They came to grips with basic object-
oriented programming, mastered the topics of procedural programming, learned first hand 
about computer simulation and learned a bit about the applied domain. Most importantly, 
through it all they used programming to express and explore their own powerful and novel 
ideas. 

Case-Study 3: An Australian University Level 
Approach: Incremental, black-box 
Language: Smalltalk 
Target group: secondary school students 
Duration: six hours 
Type: Experiential 

Andrew Hussey, David Leadbetter and Helen Purchase, from the School of Information 
Technology, The University of Queensland (Hussey et al, 1996) 

Objective: Teaching object-oriented programming skills in six hours to school students 
whom have either never programmed or never encountered OOP before. 

Goal: To devise an educational strategy that would ensure that at the end of the six 
hours, the students would have grasped the basic concepts, to the extent that they could 
make non-trivial changes to existing programs, and show understanding of the concepts 
through discussion. 

Implementation: Smalltalk using the VisualWorks environment 

Mid 3, Bil 1, Sept 2001 11 



Syed Ahmad A ljunid 

Strategy: Use many small, guided exercises of graduated difficulty. Small independent 
exercises reinforced material soon after it was introduced. Provided students with a black-
box view of an example system, which, was progressively opened as their knowledge grew. 
The overall strategy for each project (puzzle and calculator projects) was to introduce the 
application being used, first from a user's perspective, and then from a programmer's 
perspective. 

Results: Majority of the students understood the basic concepts of programming and 
OOP to the extent that they could discuss and use them. They enjoyed the sessions and 
exhibited enthusiasm for the language and the Visual Works environment. 

SOLUTION 

Overall Solution 

Our proposed solution is based on the extensive arguments, views, experiences, 
recommendations and case studies presented above. As noted earlier, the issue is not whether 
to start with OOP or procedural but rather to actually revise our programming pedagogy 
thoroughly as well as review our programming curriculum. We present our case based on 
the successful implementation of the minimalist cum black box cum 4-stages approaches in 
introducing OOP to beginners of programming. Our solution nevertheless takes into 
consideration our own background and constraints. 

Referring to the three case studies given above, we purposely picked three different 
levels, target group, duration and type of case studies. Case I has the most similar background, 
target group and level compared to UiTM, and was an actual implementation whereas cases 
II and III were both experiential in nature. Case II involved a set of highly talented but non-
CS majors while Case III involved a set of secondary school leavers. Case II shows that a 
thoroughly pedagogical approach equipped with the necessary environments and expertise 
can yield successful and intellectually engaged results while Case III demonstrated it is 
possible to teach OOP to those without programming background in a very limited time 
frame if 'the right pedagogy is utilized. 

Our proposal is based on the following emphasis: 

1. Inculcate systemic thinking and incorporate systems perspective in problem solving. 
2. Instill skills in cooperative problem solving via teamwork and by utilizing 

components and classes library. 
3. Keep the solution simple. 
4. Control complexity by building it in stages. 

Minimalist C++ Language 

12 Jilid 3, Bil 1, Sept 2001 



To (Start With) Oop, Or Not Oop: That Is Not The Question 

In the first programming subject (ITC 120), our approach is to gently introduce important 
general and 0 0 programming concepts via a GUI OOP package such as Borland's C++ 
Builder® or Microsoft Visual Basic® before proceeding to a 3GL OOP language (C++). 
By using class libraries and components from the onset, we try to encourage the students all 
these virtues that have been singled out above. 

The core of our pedagogical approach is realized via the minimalist cum black box cum 
4-stages approaches. This set of approaches will be similarly implemented for all the other 
programming subjects although we can relax the 4-stages approach where appropriate. 

Rather than changing to a simpler OOP language such as Eiffel or to a pure OOP language 
like Java, we suggest to stick to C++. Even then, we continue to highlight certain mechanisms 
while de-emphasizing C++ language peculiarities such as pre and post increments (++j vs 
j++) and operator overloading. This minimalist language approach sends the message that 
the language is secondary: paramount are the ideas and secondary is the computational 
representation of the ideas (Meter and Miller, 1994). Our decision to use C++ is primarily 
to lessen the changes and make these changes gradual, thus encouraging more acceptances 
from the instructors. As Cassel (1997) has aptly puts it, "A truly effective solution carefully 
considers the potential value of old methods as well as embracing the obvious benefits of 
new ones." 

Assignments and Projects 

We noted that most programming assignments given throughout the whole programming 
curriculum are small in nature and cover a very specific topic or sub-topic of programming. 
Only a few assignments are varied and applied domain problems. We suggest that for every 
programming subject, there must be at least one project (but preferably two so as to allow 
them to learn from their mistakes; the first project is a short one) that requires them to 
utilize most of the principles, methodologies and mechanisms learned in that subject We 
recommend to add more applied domain problems too. 

On programming projects, we noted only the ITC 421 currently has one. We propose to 
start team-based projects from ITC 210 onwards. Of course, all these projects must use 
components or class libraries, either from standard libraries or from libraries that have been 
developed by their instructors or seniors. 
Specific Programming Languages, Data Structures and Software Design Patterns 

We noted that those graduating from the DCS programs do not have the knowledge of 
a few different programming paradigms and languages. Similarly, those taking the BSc (IT) 
program do not possess the necessary programming knowledge and skills required by the 
industry as the only core-programming subject, ITC 421, "Programming Paradigms", is 
more of a survey of programming paradigms and languages. Specifically, we observed that 
these BSc (IT) graduates do not possess knowledge of some basic data structures like B-
trees, inverted files and graphs. Likewise, they do not know software design patterns, which 

Jilid 3, Bil 1, Sept 2001 13 



Syed Ahmad Aljunid 

since put forth by Gamma et. al. (1995) has been an important part of the software engineering 
field. 

All those points mentioned above have been verified in an extensive survey conducted 
by Lethbridge (1998) from University of Ottawa in 1998. The majority of the software 
professionals indicated that specific programming languages is both the most important 
and most learned topic among the 75 topics selected. Second is a data structure third are 
software design and patterns while object-oriented concepts are six. 

Thus apart from the changes proposed for ITC 120, the following are other changes: 
• ITC 260 is renamed ITC 26x*, "Data Structures I", We may have to move one 

topic up to the new ITC 4xx*. 
• A new subject, ITC 200*, "Survey of Programming Languages" (similar to the old 

CSC 117) at DCS level, and can be taken after completing ITC 160. It must cover 
at least two different paradigms. One is procedural; the other can be chosen among 
functional, logical, Web-based, etc. It should not contain Java or any OOP based 
language. 

• ITC 4xx*, "Data Structures II and Software Design Patterns" as replacement for 
ITC 421, "Programming Paradigms" (PP). ITC 4xx will cover "advanced" data 
structures like B-trees, threads, inverted files, graphs and also software design and 
patterns. A medium size (at least 500 lines of code) team-based project should be a 
requirement. ITC 4xx is not just for BSc (CS) but also BSc (IT). Currently, the ITC 
421 subject is too shallow since it is the only required programming subject at 
bachelor level. 

Lastly, we propose the new programming curriculum to implement all subjects in three 
credit hours. We should do this not just for the sake of standardizing with most universities 
but more importantly, an actual three credit hour for a core subject is actually sufficient. We 
can either implement it in a three-hour lecture format, or a two and a half followed by a one-
hour lab format. The following is the proposed curriculum 

* the specific code will be determined later 

14 Jilid3, Bill, Sept2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question 

Table 2: Proposed UiTM DCS/BSc (IT) programming curriculum 

Code Subject Name Sem CrHr Category 
ITC 120 

ITC 160 

ITC 210 

ITC 26x 
ITS 330 

ITC 265 
ITC 2xx 

ITC 4xx 

Fundamentals Of Computer 
Problem Solving 

Object Oriented Programming 
I 

Object Oriented Programming 
II 

Data Structures I 
Information System 

Development 
Commercial Programming 

Survey of Programming 
Paradigms 

Data Structures II and 
Software Design Patterns 

DCS1 

DCS2 

DCS3 

DCS4 
DCS5 

-
DCS 3-5 

BSc (IT) 

3 

3 

3 

3 
3 

3 
3 

3 

Core 

Core 

Core 

Core 
Core 

Elective 
Core 

Core 

CONCLUSION 

We have proposed a new programming curriculum based on the current needs and rapidly 
changing computing field. Our approach is rich in pedagogy, which has been neglected for 
a long time. We also try to capture the student interest in programming as well as being 
practical in our approach. We try to realize all this via the minimalist cum black box cum 4-
stages approaches in introducing OOP. 

Acknowledging that changes in curriculum must be driven by data and facts rather than 
anecdotes, mere perceptions and intuitions, we have managed to substantiate our proposal 
based on extensive arguments, views, experiences, recommendations and case studies taken 
from reputable and varied sources. 

We must have the strength and courage to change and adapt accordingly, and to act fast 
too. As Haines (1997) puts it, "The pace of computing technology evolution demands that 
industry and academic institutions work more closely together. ... Perhaps the academic 
community needs to "reengineer" itself in much the same way as most of the industry has 
done or is doing. There may be no other way to equip college graduates to meet industry 
expectations." 

We end our paper by reflecting one of the resolutions of the 1991 UiTM Programming 
Workshop Resolutions (Aljunid, 1991): "We must instill an academic culture which is open 
to criticism, able to accept changes including changes in direction as well as to embrace any 
new paradigm shifts". 

Jilid3, Bill, Sept2001 15 



Syed Ahmad Aljunid 

REFERENCES 

Aljunid, S.A. 2000. The Teaching of Object-oriented Programming - where do we stand? 
Bengkel Pengajaran Pengaturcaraan UiTM 2000 (BPPU 2000), 
UiTM, Shah Alam, Jun 8. 

Aljunid, S.A. 1990. Bengkel Pengajaran Pengaturcaraan, Kajian Sains Matematik dan 
Komputer, UiTM, Shah Alam, December. 

Boulay, B.D, O'Shea, T, Monk, J. 1989. The Black Box within the Glass Box: Presenting 
Computing Concepts to Novices, in Studying the Novice Programmer, E Soloway and J 
Spohrer (ed.), Lawrence Erlbaum Associates Inc, NJ. 

Cassel, L. 1997. Blend of Old and New. IEEE Computer, 30(11): 50-51, Nov. 

Decker, R and Hirshfield, S. 1994. The top 10 reasons why object-oriented programming 
can't be taught in CS1. Selected papers of the twenty-fifth annual SIGCSE symposium on 
Computer science education, 51-55. 

Decker, R and Hirshfield, S. 1993. Top-down teaching: object-oriented programming in CS 
1. Proceedings of the Twenty-fourth SIGCSE technical symposium on Computer science 
education, 270 - 273. 

Deitel H. and Deitel. P. 1997. C++ - How to Program, (2nd ed.), Prentice-Hall, New Jersey. 

Denning, P.J. 1999. Our Seed Corn is Growing in the Commons. Information Impacts 
Magazine, March. 

Engel, G and Roberts, E. (ed.) 2000. Computing Curricula 2001, The Joint Task Force on 
Computing Curricula, Association for Computing Machinery and the IEEE Computer 
Society, (draft), March 6. 

Freeman, RE. 1997. Elements of Effective Computer Science. IEEE Computer, 
30(11): 47-48. 

Gamma, E, Helm, R, Johnson, R and Vlissides, J. 1995. Design Patterns - Elements of 
Reusable Object-Oriented Software. Addison-Wesley, Reading. 
HainesJ.E. 1997. The Case for More Relevant Computing Skills. IEEE Computer, 30(11): 
55-56, Nov. 

Hirshfield, S., Astrachan, O., Barr, J., Donnelly, K., Levine, K., and McGinn, M. 1994. 

16 Jilid3, Bill, Sept2001 



To (Start With) Pop, Or Not Pop: That Is Not The Question 

Object-oriented programming: how to scale up CS 1. Selected papers of the twenty-fifth 
annual SIGCSE symposium on Computer science education, 396. 

Horstmann, C. 1999. Computing Concepts with C++ Essentials (2nd ed.), 
John Wiley, New York. 

Hussey, A, Leadbetter, D and Purchase, H. 1996. Learning object-oriented programming in 
six hours: an experience with school students. Proceedings of the second Australasian 
conference on Computer science education, 117 - 125 

Kernighan, B. and Plauger. 1981. Software Tools in Pascal, Addison-Welsey. 

Kolling, M and Rosenberg, J. 1996. An object-oriented program development environment 
for the first programming course. Proceedings of the twenty-seventh SIGCSE technical 
symposium on Computer science education. 83 - 87. 

Lethbridge, T. 2000. What Knowledge Is Important to a Software Professional? IEEE 
Computer, 33(5): 44-50, May. 

Meter, G and Miller, P. 1994. Engaging students and teaching modern concepts: literate, 
situated, object-oriented programming. Selected papers of the twenty-fifth annual SIGCSE 
symposium on Computer science education, 329 - 333. 

Meyer, B. 1993. Toward an Object-Oriented Curriculum. Journal of Object-Oriented 
Programming, 6(6): 76, May. 

Stehlik, M. 1993. Report for the panel Approaches to Programming Assignments in CS1 
and CS2, Proceedings of the Twenty-Fourth SIGCSE Technical Symposium on Computer 
Science Education, March. 

Stokes, G.E. 1997. Rethinking the Current Formula. IEEE Computer, 30(11): 48-49, Nov. 
Tucker, A.B, Barnes, B.H, Aiken, R.M, Barker, K, Bruce Kim B, Cain, J.Thomas,. Conry, 
S.E, Engel, G.L, Epstein, R.G, Lidtke, D.K, Mulder, M.C, Rogers, J.B, Spafford, E.H, and 
Turner, A.J. 1991. Computing Curricula '91, Association for Computing Machinery and 
the IEEE Computer Society. 

Turner, J. 1997. Making the Structure More Flexible. IEEE Computer, 30(11): 56-57, Nov. 

Walsh, T. 1989. Rationale for and Problems Involved in Teaching Programming. M.Ed. 
Dissertation. University of Stirling, Stirling. 

Jilid 3, Bil 1, Sept 2001 17 




